Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
ACS Appl Mater Interfaces. 2023 May 3;15(17):21097-21111. doi: 10.1021/acsami.3c01580. Epub 2023 Apr 19.
The present research work facilitates a ligand-mediated effective strategy to achieve different morphological surface structures of bimetallic (Ni and Co) metal-organic frameworks (MOFs) by utilizing different types of organic ligands like terephthalic acid (BDC), 2-methylimidazole (2-Melm), and trimesic acid (BTC). Different morphological structures, rectangular-like nanosheets, petal-like nanosheets, and nanosheet-assembled flower-like spheres (NSFS) of NiCo MOFs, are confirmed from the structural characterization for ligands BDC, 2-Melm, and BTC, respectively. The basic characterization studies like scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller revealed that the NiCo MOF prepared by using trimesic acid as the ligand (NiCo MOF_BTC) with a long organic linker exhibits a three-dimensional architecture of NSFS that possesses higher surface area and pore dimensions, which enables better ion kinetics. Also, the NiCo MOF_BTC delivered the highest capacity of 1471.4 C g (and 408 mA h g) at 1 A g current density, compared to the other prepared NiCo MOFs and already reported different NiCo MOF structures. High interaction of trimesic acid with the metal ions confirmed from ultraviolet-visible spectroscopy and X-ray photoelectron spectroscopy leads to a NSFS structure of NiCo MOF_BTC. For practical application, an asymmetric supercapacitor device (NiCo MOF_BTC//AC) is fabricated by taking NiCo MOF_BTC and activated carbon as the positive and negative electrode, respectively, where the PVA + KOH gel electrolyte serves as a separator as well as an electrolyte. The device delivered an outstanding energy density of 78.1 Wh kg at a power density of 750 W kg in an operating potential window of 1.5 V. In addition, it displays a long cycle life of 5000 cycles with only 12% decay of the initial specific capacitance. Therefore, these findings manifest the morphology control of MOFs by using different ligands and the mechanism behind the different morphologies that will provide an effective way to synthesize differently structured MOF materials for future energy-storage applications.
本研究工作通过利用不同类型的有机配体,如对苯二甲酸(BDC)、2-甲基咪唑(2-Melm)和均苯三甲酸(BTC),为实现双金属(Ni 和 Co)金属有机骨架(MOF)的不同形态表面结构提供了一种配体介导的有效策略。对于配体 BDC、2-Melm 和 BTC,分别从结构表征上确认了 NiCo MOF 的不同形态结构,如矩形纳米片、花瓣状纳米片和纳米片组装的花状球(NSFS)。基本特性研究,如扫描电子显微镜、X 射线衍射、透射电子显微镜和 Brunauer-Emmett-Teller 表明,使用均苯三甲酸作为配体(NiCo MOF_BTC)制备的 NiCo MOF 具有较长有机连接物的三维 NSFS 架构,具有更高的表面积和孔径,这使其具有更好的离子动力学性能。此外,与其他制备的 NiCo MOFs 和已经报道的不同 NiCo MOF 结构相比,NiCo MOF_BTC 在 1 A g 电流密度下表现出最高的容量 1471.4 C g(和 408 mA h g)。从紫外-可见光谱和 X 射线光电子能谱中证实了均苯三甲酸与金属离子的高相互作用导致 NiCo MOF_BTC 的 NSFS 结构。为了实际应用,通过以 NiCo MOF_BTC 和活性炭分别作为正负极,采用 PVA+KOH 凝胶电解质作为隔板和电解质,制备了非对称超级电容器器件(NiCo MOF_BTC//AC)。该器件在 1.5 V 的工作电位窗口下,在 750 W kg 的功率密度下表现出 78.1 Wh kg 的出色能量密度。此外,它还具有 5000 次循环的长循环寿命,初始比电容仅衰减 12%。因此,这些发现表明通过使用不同的配体来控制 MOF 的形态,并揭示不同形态背后的机制,这将为未来的储能应用提供一种有效的方法来合成具有不同结构的 MOF 材料。