文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于石英晶体微天平气体传感器新兴应用的双金属金属有机框架的纳米结构设计

Nanoarchitecturing of Bimetallic Metal‒Organic Frameworks for Emerging Applications in Quartz Crystal Microbalance Gas Sensors.

作者信息

Chowdhury Silvia, Nugraha Asep Sugih, Yuliarto Brian, Yamauchi Yusuke, Kaneti Yusuf Valentino

机构信息

Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.

Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.

出版信息

Small Methods. 2025 Jul;9(7):e2401808. doi: 10.1002/smtd.202401808. Epub 2025 May 12.


DOI:10.1002/smtd.202401808
PMID:40351034
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12285642/
Abstract

Metal‒organic frameworks (MOFs) are promising materials for advanced sensors because of their large surface area, high porosity, and compositional and structural versatility. The incorporation of a secondary metal center to form bimetallic MOFs can significantly enhance sensor performance by increasing the number of adsorption sites for gas molecules, enhancing charge transfer, and improving structural stability. Additionally, the tunable structure, composition, and porosity of bimetallic MOFs allow for the design of highly selective sensors tailored to specific gases. However, their low conductivity and thermal stability limit their application in traditional chemiresistive sensors. Instead, bimetallic MOFs are well suited for mass-sensitive gas sensors, such as quartz crystal microbalance (QCM) gas sensors, which operate at room temperature and rely on physical or chemical interactions. This review highlights recent advances in the exterior and interior nanoarchitectural control of bimetallic MOFs and their emerging applications in QCM sensors for various gas detection methods, along with the underlying sensing mechanisms. This study concludes with an overview of the challenges and future research directions in the synthesis and application of these materials for QCM gas sensors.

摘要

金属有机框架材料(MOFs)因其具有大的表面积、高孔隙率以及组成和结构的多样性,是用于先进传感器的有前景的材料。引入二级金属中心形成双金属MOFs,可以通过增加气体分子的吸附位点数量、增强电荷转移以及提高结构稳定性来显著提升传感器性能。此外,双金属MOFs可调节的结构、组成和孔隙率使得设计针对特定气体的高选择性传感器成为可能。然而,它们的低导电性和热稳定性限制了其在传统化学电阻式传感器中的应用。相反,双金属MOFs非常适合用于质量敏感型气体传感器,如石英晶体微天平(QCM)气体传感器,这类传感器在室温下工作,依靠物理或化学相互作用。本综述重点介绍了双金属MOFs在外部和内部纳米结构控制方面的最新进展及其在用于各种气体检测方法的QCM传感器中的新兴应用,以及潜在的传感机制。本研究最后概述了这些材料在QCM气体传感器合成和应用中面临的挑战及未来研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/0e8c19f97123/SMTD-9-2401808-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/bfcb2af53df9/SMTD-9-2401808-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/68f39727a076/SMTD-9-2401808-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/e5217424d823/SMTD-9-2401808-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/4c1fc9ecbcd7/SMTD-9-2401808-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/19b72402c28b/SMTD-9-2401808-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/08254bd15e24/SMTD-9-2401808-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/1b1494f9ab35/SMTD-9-2401808-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/8efb31c3f62a/SMTD-9-2401808-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/828b9c0bde74/SMTD-9-2401808-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/9bd080041dc0/SMTD-9-2401808-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/5cc8ac343c0f/SMTD-9-2401808-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/7f7cfe84c65b/SMTD-9-2401808-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/d24fdf49b2f7/SMTD-9-2401808-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/0213b6de807e/SMTD-9-2401808-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/724aea916c82/SMTD-9-2401808-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/4513fed0e253/SMTD-9-2401808-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/c73cdd9c6396/SMTD-9-2401808-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/3c58fb872a66/SMTD-9-2401808-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/0e8c19f97123/SMTD-9-2401808-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/bfcb2af53df9/SMTD-9-2401808-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/68f39727a076/SMTD-9-2401808-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/e5217424d823/SMTD-9-2401808-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/4c1fc9ecbcd7/SMTD-9-2401808-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/19b72402c28b/SMTD-9-2401808-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/08254bd15e24/SMTD-9-2401808-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/1b1494f9ab35/SMTD-9-2401808-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/8efb31c3f62a/SMTD-9-2401808-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/828b9c0bde74/SMTD-9-2401808-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/9bd080041dc0/SMTD-9-2401808-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/5cc8ac343c0f/SMTD-9-2401808-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/7f7cfe84c65b/SMTD-9-2401808-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/d24fdf49b2f7/SMTD-9-2401808-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/0213b6de807e/SMTD-9-2401808-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/724aea916c82/SMTD-9-2401808-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/4513fed0e253/SMTD-9-2401808-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/c73cdd9c6396/SMTD-9-2401808-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/3c58fb872a66/SMTD-9-2401808-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/12285642/0e8c19f97123/SMTD-9-2401808-g025.jpg

相似文献

[1]
Nanoarchitecturing of Bimetallic Metal‒Organic Frameworks for Emerging Applications in Quartz Crystal Microbalance Gas Sensors.

Small Methods. 2025-7

[2]
Halogen-Decorated Metal-Organic Frameworks for Efficient and Selective CO Capture, Separation, and Chemical Fixation with Epoxides under Mild Conditions.

ACS Appl Mater Interfaces. 2024-4-11

[3]
[Recent applications of porous-material-based adsorbents for extracting pesticide residues from environmental and foodstuff samples].

Se Pu. 2025-7

[4]
Machine Learning-Enhanced Chemiresistive Sensors for Ultra-Sensitive Detection of Methanol Adulteration in Alcoholic Beverages.

ACS Sens. 2025-6-27

[5]
Understanding the Growth of ZIF-8 Thin Film and Its Room Temperature Carbon Dioxide Sensing via Quartz Crystal Microbalance.

ACS Appl Mater Interfaces. 2025-8-13

[6]
Opportunities in functionalized metal-organic frameworks (MOFs) with open metal sites for optical biosensor application.

Adv Colloid Interface Sci. 2025-7-7

[7]
Reticular Chemistry within Crystalline Porous Gas Adsorbents and Membranes.

Acc Chem Res. 2025-5-15

[8]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[9]
Flexible Metal-Organic Frameworks for Adsorptive Separation of Liquid Hydrocarbons.

Acc Chem Res. 2025-7-1

[10]
Toxicity Challenges and Current Advancement in Metal-Organic Frameworks (MOFs) for Biomedical Applications.

Biol Trace Elem Res. 2025-6-24

本文引用的文献

[1]
Trimodal Hierarchical Porous Carbon Nanoplates with Edge Curvature for Faster Mass Transfer and Enhanced Oxygen Reduction.

ACS Nano. 2025-4-1

[2]
Tailoring crystal facets of metal-organic frameworks to enhance sensing performance for aromatic vapors detection.

J Hazard Mater. 2025-3-15

[3]
High-Performance HS Sensors to Detect SF Leakage.

ACS Sens. 2024-10-25

[4]
Metal-organic framework modified open-cavity optical fiber Fabry-Pérot interferometer for volatile organic compound detection.

Talanta. 2025-1-1

[5]
Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects.

Environ Res. 2024-11-1

[6]
Room-temperature synthesis of bimetallic ZnCu-MOF-74 as an adsorbent for tetracycline removal from an aqueous solution.

Dalton Trans. 2024-12-3

[7]
Yolk-Shell Hierarchical Pore Au@MOF Nanostructures: Efficient Gas Capture and Enrichment for Advanced Breath Analysis.

Nano Lett. 2024-8-21

[8]
Template-Assisted in situ synthesis of superaerophobic bimetallic MOF composites with tunable morphology for boosted oxygen evolution reaction.

J Colloid Interface Sci. 2024-12-15

[9]
Recent Advances of Bimetallic-Metal Organic Frameworks: Preparation, Properties, and Fluorescence-Based Biochemical Sensing Applications.

ACS Appl Mater Interfaces. 2024-6-26

[10]
Hierarchically Ordered Pore Engineering of Metal-Organic Framework-Based Materials for Electrocatalysis.

Adv Mater. 2024-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索