Suppr超能文献

基于 SEER 数据库的回顾性队列研究:预测肠型胃腺癌患者生存的模型。

Prediction models for the survival in patients with intestinal-type gastric adenocarcinoma: a retrospective cohort study based on the SEER database.

机构信息

Department of Gastroenterology, Rudong People's Hospital, Nantong, China.

Department of Gastroenterology, Rudong People's Hospital, Nantong, China

出版信息

BMJ Open. 2023 Apr 19;13(4):e070803. doi: 10.1136/bmjopen-2022-070803.

Abstract

OBJECTIVE

To explore the influencing factors of survival in intestinal-type gastric adenocarcinoma (IGA) and set up prediction model for the prediction of survival of patients diagnosed with IGA.

DESIGN

A retrospective cohort study.

SETTING AND PARTICIPANTS

A total of 2232 patients with IGA who came from the Surveillance, Epidemiology, and End Results database.

PRIMARY AND SECONDARY OUTCOME MEASURES

Patients' overall survival (OS) rate and cancer-specific survival (CSS) at the end of follow-up.

RESULTS

Of the total population, 25.72% survived, 54.93% died of IGA and 19.35% died of other causes. The median survival time of patients was 25 months. The result showed that age, race, stage group, T stage, N stage, M stage, grade, tumour size, radiotherapy, number of lymph nodes removed and gastrectomy were independent prognostic factors of OS risk for patients with IGA; age, race, race, stage group, T stage, N stage, M stage, grade, radiotherapy and gastrectomy were associated with CSS risk for patients with IGA. In view of these prognostic factors, we developed two prediction models for predicting the OS and CSS risk for patients with IGA separately. For the developed OS-related prediction model, the C-index was 0.750 (95% CI: 0.740 to 0.760) in the training set, corresponding to 0.753 (95% CI: 0.736 to 0.770) in the testing set. Likewise, for the developed CSS-related prediction model, the C-index was 0.781 (95% CI: 0.770 to 0.793) in the training set, corresponding to 0.785 (95% CI: 0.766 to 0.803) in the testing set. The calibration curves of the training set and testing set revealed a good agreement between model predictions in the 1-year, 3-year and 5-year survival for patients with IGA and actual observations.

CONCLUSION

Combining demographic and clinicopathological features, two prediction models were developed to predict the risk of OS and CSS in patients with IGA, respectively. Both models have good predictive performance.

摘要

目的

探讨肠型胃腺癌(IGA)生存的影响因素,并建立预测模型,以预测诊断为 IGA 的患者的生存情况。

设计

回顾性队列研究。

设置和参与者

共纳入来自监测、流行病学和最终结果数据库的 2232 例 IGA 患者。

主要和次要结局测量

患者的总生存(OS)率和随访结束时的癌症特异性生存(CSS)率。

结果

在总人群中,有 25.72%的患者存活,54.93%的患者死于 IGA,19.35%的患者死于其他原因。患者的中位生存时间为 25 个月。结果显示,年龄、种族、分期组、T 分期、N 分期、M 分期、分级、肿瘤大小、放疗、淋巴结清扫数目和胃切除术是影响 IGA 患者 OS 风险的独立预后因素;年龄、种族、种族、分期组、T 分期、N 分期、M 分期、分级、放疗和胃切除术与 IGA 患者 CSS 风险相关。鉴于这些预后因素,我们分别为预测 IGA 患者的 OS 和 CSS 风险开发了两个预测模型。对于开发的 OS 相关预测模型,在训练集中,C 指数为 0.750(95%CI:0.740 至 0.760),在测试集中,相应的 C 指数为 0.753(95%CI:0.736 至 0.770)。同样,对于开发的 CSS 相关预测模型,在训练集中,C 指数为 0.781(95%CI:0.770 至 0.793),在测试集中,相应的 C 指数为 0.785(95%CI:0.766 至 0.803)。训练集和测试集的校准曲线表明,对于 IGA 患者的 1 年、3 年和 5 年生存率,模型预测与实际观察之间存在良好的一致性。

结论

结合人口统计学和临床病理特征,分别建立了预测 IGA 患者 OS 和 CSS 风险的两个预测模型。这两个模型都具有良好的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6243/10124255/c7f2b9014d80/bmjopen-2022-070803f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验