Oklahoma State University, Stillwater, OK, USA.
Sci Rep. 2023 Apr 19;13(1):6407. doi: 10.1038/s41598-023-32675-5.
Flying insects routinely demonstrate coordinated flight in crowded assemblies despite strict communication and processing constraints. This study experimentally records multiple flying insects tracking a moving visual stimulus. System identification techniques are used to robustly identify the tracking dynamics, including a visuomotor delay. The population delay distributions are quantified for solo and group behaviors. An interconnected visual swarm model incorporating heterogeneous delays is developed, and bifurcation analysis and swarm simulation are applied to assess swarm stability under the delays. The experiment recorded 450 insect trajectories and quantified visual tracking delay variation. Solitary tasks showed a 30ms average delay and standard deviation of 50ms, while group behaviors show a 15ms average and 8ms standard deviation. Analysis and simulation indicate that the delay adjustments during group flight support swarm formation and center stability, and are robust to measurement noise. These results quantify the role of visuomotor delay heterogeneity in flying insects and their role in supporting swarm cohesion through implicit communication.
昆虫在拥挤的群体中能够进行协调的飞行,尽管受到严格的通讯和处理限制。本研究通过实验记录了多只飞行昆虫跟踪移动视觉刺激的过程。系统辨识技术被用于稳健地识别跟踪动态,包括视觉运动延迟。对单个和群体行为的群体延迟分布进行了量化。提出了一种包含异质延迟的互联视觉群体模型,并应用分岔分析和群体模拟来评估延迟下的群体稳定性。该实验记录了 450 只昆虫的轨迹,并量化了视觉跟踪延迟的变化。单独任务的平均延迟为 30ms,标准偏差为 50ms,而群体行为的平均延迟为 15ms,标准偏差为 8ms。分析和模拟表明,在群体飞行期间的延迟调整支持了群体的形成和中心稳定性,并且对测量噪声具有鲁棒性。这些结果量化了视觉运动延迟异质性在飞行昆虫中的作用,以及它们通过隐式通讯支持群体凝聚力的作用。