Ahmed Ishriak, Faruque Imraan A
Oklahoma State University, Stillwater, OK, United States of America.
Bioinspir Biomim. 2022 Jun 8;17(4). doi: 10.1088/1748-3190/ac6849.
Individual insects flying in crowded assemblies perform complex aerial maneuvers by sensing and feeding back neighbor measurements to small changes in their wing motions. To understand the individual feedback rules that permit these fast, adaptive behaviors in group flight, both experimental preparations inducing crowded flight and high-speed tracking systems capable of tracking both body motions and more subtle wing motion changes for multiple insects in simultaneous flight are needed. This measurement capability extends tracking beyond the previous focus on individual insects to multiple insects. This paper describes an experimental preparation that induces crowded insect flight in more naturalistic conditions (a laboratory-outdoor transition tunnel) and directly compares the resulting flight performance to traditional flight enclosures. Measurements are made possible via the introduction of a multi-agent high speed insect tracker called Hi-VISTA, which provides a capability to track wing and body motions of multiple insects using high speed cameras (9000-12 500 fps). Processing steps consist of automatic background identification, data association, hull reconstruction, segmentation, and feature measurement. To improve the biological relevance of laboratory experiments and develop a platform for interaction studies, this paper applies the Hi-VISTA measurement system toforagers habituated to transit flights through the transparent transition environment. Binary statistical analysis (Welch's t-test, Cohen's d effect size) of 95 flight trajectories is presented, quantifying the differences between flights in an unobstructed environment and in a confined tunnel volume. The results indicate that body pitch angle, heading rate, flapping frequency, and vertical speed (heave) are each affected by confinement, and other flight variables show minor or statistically insignificant changes. These results form a baseline as swarm tracking and analysis begins to isolate the effects of neighbors from environmental enclosures, and improve the connection of high speed insect laboratory experiments to outdoor field experiments.
在拥挤群体中飞行的个体昆虫,通过感知并反馈相邻个体的测量信息来对其翅膀运动的微小变化做出反应,从而执行复杂的空中机动动作。为了理解在群体飞行中允许这些快速适应性行为的个体反馈规则,既需要能够诱导拥挤飞行的实验装置,也需要能够同时跟踪多只昆虫身体运动和更细微翅膀运动变化的高速跟踪系统。这种测量能力将跟踪范围从之前对单个昆虫的关注扩展到了多只昆虫。本文描述了一种在更自然的条件下(实验室 - 室外过渡隧道)诱导昆虫拥挤飞行的实验装置,并将由此产生的飞行性能与传统飞行笼进行了直接比较。通过引入一种名为Hi - VISTA的多智能体高速昆虫跟踪器实现了测量,该跟踪器能够使用高速摄像机(9000 - 12500帧/秒)跟踪多只昆虫的翅膀和身体运动。处理步骤包括自动背景识别、数据关联、船体重建、分割和特征测量。为了提高实验室实验的生物学相关性并开发一个用于相互作用研究的平台,本文将Hi - VISTA测量系统应用于习惯在透明过渡环境中进行过渡飞行的觅食者。给出了对95条飞行轨迹的二元统计分析(韦尔奇t检验、科恩d效应量),量化了在无障碍环境和受限隧道空间中飞行之间的差异。结果表明,身体俯仰角、航向变化率、拍打频率和垂直速度(起伏)均受限制影响,而其他飞行变量显示出微小变化或统计学上不显著的变化。这些结果形成了一个基线,随着群体跟踪和分析开始将相邻个体的影响与环境围栏的影响区分开来,并改善高速昆虫实验室实验与室外实地实验的联系。