Dong Xue, Yang Jiawen, Zhang Binhao, Li Yujing, Wang Guanliang, Chen Jinyao, Wei Yuguo, Zhang Huangqi, Chen Qingqing, Jin Shengze, Wang Lingxia, He Haiqing, Gan Meifu, Ji Wenbin
Department of Radiology, Taizhou Hospital, Zhejiang University, Taizhou, Zhejiang, China.
Department of Radiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China.
J Magn Reson Imaging. 2024 Jan;59(1):108-119. doi: 10.1002/jmri.28745. Epub 2023 Apr 20.
Vessels encapsulating tumor cluster (VETC) is a critical prognostic factor and therapeutic predictor of hepatocellular carcinoma (HCC). However, noninvasive evaluation of VETC remains challenging.
To develop and validate a deep learning radiomic (DLR) model of dynamic contrast-enhanced MRI (DCE-MRI) for the preoperative discrimination of VETC and prognosis of HCC.
Retrospective.
A total of 221 patients with histologically confirmed HCC and stratified this cohort into training set (n = 154) and time-independent validation set (n = 67).
FIELD STRENGTH/SEQUENCE: A 1.5 T and 3.0 T; DCE imaging with T1-weighted three-dimensional fast spoiled gradient echo.
Histological specimens were used to evaluate VETC status. VETC+ cases had a visible pattern (≥5% tumor area), while cases without any pattern were VETC-. The regions of intratumor and peritumor were segmented manually in the arterial, portal-venous and delayed phase (AP, PP, and DP, respectively) of DCE-MRI and reproducibility of segmentation was evaluated. Deep neural network and machine learning (ML) classifiers (logistic regression, decision tree, random forest, SVM, KNN, and Bayes) were used to develop nine DLR, 54 ML and clinical-radiological (CR) models based on AP, PP, and DP of DCE-MRI for evaluating VETC status and association with recurrence.
The Fleiss kappa, intraclass correlation coefficient, receiver operating characteristic curve, area under the curve (AUC), Delong test and Kaplan-Meier survival analysis. P value <0.05 was considered as statistical significance.
Pathological VETC+ were confirmed in 68 patients (training set: 46, validation set: 22). In the validation set, DLR model based on peritumor PP (peri-PP) phase had the best performance (AUC: 0.844) in comparison to CR (AUC: 0.591) and ML (AUC: 0.672) models. Significant differences in recurrence rates between peri-PP DLR model-predicted VETC+ and VETC- status were found.
The DLR model provides a noninvasive method to discriminate VETC status and prognosis of HCC patients preoperatively.
Stage 2.
包绕肿瘤簇的血管(VETC)是肝细胞癌(HCC)的关键预后因素和治疗预测指标。然而,对VETC进行无创评估仍具有挑战性。
开发并验证一种基于动态对比增强磁共振成像(DCE-MRI)的深度学习放射组学(DLR)模型,用于术前鉴别VETC及预测HCC的预后。
回顾性研究。
共纳入221例经组织学确诊的HCC患者,并将该队列分为训练集(n = 154)和时间独立验证集(n = 67)。
场强/序列:1.5T和3.0T;采用T1加权三维快速扰相梯度回波序列进行DCE成像。
使用组织学标本评估VETC状态。VETC+病例具有可见模式(肿瘤面积≥5%),而无任何模式的病例为VETC-。在DCE-MRI的动脉期、门静脉期和延迟期(分别为AP、PP和DP)手动分割肿瘤内和肿瘤周围区域,并评估分割的可重复性。使用深度神经网络和机器学习(ML)分类器(逻辑回归、决策树、随机森林、支持向量机、K近邻和贝叶斯),基于DCE-MRI 的AP、PP和DP开发9个DLR、54个ML和临床-放射学(CR)模型,以评估VETC状态及其与复发的相关性。
采用Fleiss卡方检验、组内相关系数、受试者工作特征曲线、曲线下面积(AUC)、德龙检验和Kaplan-Meier生存分析。P值<0.05被认为具有统计学意义。
68例患者经病理证实为VETC+(训练集:46例,验证集:22例)。在验证集中,与CR模型(AUC:0.591)和ML模型(AUC:0.672)相比,基于肿瘤周围PP(peri-PP)期的DLR模型表现最佳(AUC:0.844)。发现peri-PP DLR模型预测的VETC+和VETC-状态之间的复发率存在显著差异。
DLR模型为术前鉴别HCC患者的VETC状态和预后提供了一种无创方法。
4级。
2级。