Zhang Jiyun, Liu Maotong, Qu Qi, Lu Mengtian, Liu Zixin, Yan Zuyi, Xu Lei, Gu Chunyan, Zhang Xueqin, Zhang Tao
Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China.
Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China.
Front Oncol. 2024 Aug 13;14:1422119. doi: 10.3389/fonc.2024.1422119. eCollection 2024.
The aim of this study was to develop an integrated model that combines clinical-radiologic and radiomics features based on gadoxetic acid-enhanced MRI for preoperative evaluating of vessels encapsulating tumour clusters (VETC) patterns in hepatocellular carcinoma (HCC).
This retrospective study encompassed 234 patients who underwent surgical resection. Among them, 101 patients exhibited VETC-positive HCC, while 133 patients displayed VETC-negative HCC. Volumes of interest were manually delineated for entire tumour regions in the arterial phase (AP), portal phase (PP), and hepatobiliary phase (HBP) images. Independent predictors for VETC were identified through least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression analysis, utilising radiomics-AP, PP, HBP, along with 24 imaging features and 19 clinical characteristics. Subsequently, the clinico-radiologic model, radiomics model, and integrated model were established, with a nomogram visualising the integrated model. The performance for VETC prediction was evaluated using a receiver operating characteristic curve.
The integrated model, composed of 3 selected traditional imaging features (necrosis or severe ischemia [OR=2.457], peripheral washout [OR=1.678], LLR_AP (Lesion to liver ratio_AP) [OR=0.433] and radiomics-AP [OR=2.870], radiomics-HBP [OR=2.023], radiomics-PP [OR=1.546]), showcased good accuracy in predicting VETC patterns in both the training (AUC=0.873, 95% confidence interval [CI]: 0.821-0.925)) and validation (AUC=0.869, 95% CI:0.789-0.950) cohorts.
This study established an integrated model that combines traditional imaging features and radiomic features from gadoxetic acid-enhanced MRI, demonstrating good performance in predicting VETC patterns.
本研究旨在开发一种基于钆塞酸二钠增强磁共振成像(MRI)的综合模型,该模型结合临床放射学和影像组学特征,用于术前评估肝细胞癌(HCC)中肿瘤簇包绕血管(VETC)模式。
这项回顾性研究纳入了234例行手术切除的患者。其中,101例患者表现为VETC阳性HCC,133例患者表现为VETC阴性HCC。在动脉期(AP)、门静脉期(PP)和肝胆期(HBP)图像上手动勾勒整个肿瘤区域的感兴趣体积。通过最小绝对收缩和选择算子(LASSO)回归以及多变量逻辑回归分析,利用影像组学-AP、PP、HBP以及24个影像特征和19个临床特征,确定VETC的独立预测因素。随后,建立临床放射学模型、影像组学模型和综合模型,并用列线图可视化综合模型。使用受试者操作特征曲线评估VETC预测的性能。
综合模型由3个选定的传统影像特征(坏死或严重缺血[OR=2.457]、外周廓清[OR=1.678]、LLR_AP(病变与肝脏比值_AP)[OR=0.433])以及影像组学-AP[OR=2.870]、影像组学-HBP[OR=2.023]、影像组学-PP[OR=1.546]组成,在训练队列(AUC=0.873,95%置信区间[CI]:0.821-0.925)和验证队列(AUC=0.869,95%CI:0.789-0.950)中对VETC模式的预测均显示出良好的准确性。
本研究建立了一个结合钆塞酸二钠增强MRI的传统影像特征和影像组学特征的综合模型,在预测VETC模式方面表现良好。