Yang Chao, Liu Qiang, Liu Yi, Cheung Yiu-Ming
IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6061-6074. doi: 10.1109/TNNLS.2023.3265762. Epub 2024 May 2.
Quality prediction is beneficial to intelligent inspection, advanced process control, operation optimization, and product quality improvements of complex industrial processes. Most of the existing work obeys the assumption that training samples and testing samples follow similar data distributions. The assumption is, however, not true for practical multimode processes with dynamics. In practice, traditional approaches mostly establish a prediction model using the samples from the principal operating mode (POM) with abundant samples. The model is inapplicable to other modes with a few samples. In view of this, this article will propose a novel dynamic latent variable (DLV)-based transfer learning approach, called transfer DLV regression (TDLVR), for quality prediction of multimode processes with dynamics. The proposed TDLVR can not only derive the dynamics between process variables and quality variables in the POM but also extract the co-dynamic variations among process variables between the POM and the new mode. This can effectively overcome data marginal distribution discrepancy and enrich the information of the new mode. To make full use of the available labeled samples from the new mode, an error compensation mechanism is incorporated into the established TDLVR, termed compensated TDLVR (CTDLVR), to adapt to the conditional distribution discrepancy. Empirical studies show the efficacy of the proposed TDLVR and CTDLVR methods in several case studies, including numerical simulation examples and two real-industrial process examples.
质量预测有利于复杂工业过程的智能检测、先进过程控制、操作优化和产品质量改进。现有的大多数工作都遵循训练样本和测试样本遵循相似数据分布的假设。然而,对于具有动态特性的实际多模态过程,该假设并不成立。在实际中,传统方法大多使用来自具有丰富样本的主操作模式(POM)的样本建立预测模型。该模型不适用于具有少量样本的其他模式。鉴于此,本文将提出一种基于动态潜变量(DLV)的新型迁移学习方法,称为迁移DLV回归(TDLVR),用于具有动态特性的多模态过程的质量预测。所提出的TDLVR不仅可以推导POM中过程变量和质量变量之间的动态关系,还可以提取POM和新模式之间过程变量的共同动态变化。这可以有效克服数据边际分布差异,丰富新模式的信息。为了充分利用新模式中可用的标记样本,在建立的TDLVR中引入了误差补偿机制,称为补偿TDLVR(CTDLVR),以适应条件分布差异。实证研究表明,所提出的TDLVR和CTDLVR方法在几个案例研究中是有效的,包括数值模拟示例和两个实际工业过程示例。