Suppr超能文献

深度SG2PPI:一种基于深度学习的蛋白质-蛋白质相互作用预测方法。

DeepSG2PPI: A Protein-Protein Interaction Prediction Method Based on Deep Learning.

作者信息

Zhang Fan, Zhang Yawei, Zhu Xiaoke, Chen Xiaopan, Lu Fuhao, Zhang Xinhong

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):2907-2919. doi: 10.1109/TCBB.2023.3268661. Epub 2023 Oct 9.

Abstract

Protein-protein interaction (PPI) plays an important role in almost all life activities. Many protein interaction sites have been confirmed by biological experiments, but these PPI site identification methods are time-consuming and expensive. In this study, a deep learning-based PPI prediction method, named DeepSG2PPI, is developed. First, the protein sequence information is retrieved and the local context information of each amino acid residue is calculated. A two-dimensional convolutional neural network (2D-CNN) model is employed to extract features from a two-channel coding structure, in which an attention mechanism is embedded to assign higher weights to key features. Second, the global statistical information of each amino acid residue and the relationship graph between the protein and GO (Gene Ontology) function annotation are built, and the graph embedding vector is constructed to represent the biological features of the protein. Finally, a 2D-CNN model and two 1D-CNN models are combined for PPI prediction. The comparison analysis with existing algorithms shows that the DeepSG2PPI method has better performance. It provides more accurate and effective PPI site prediction, which will be helpful in reducing the cost and failure rate of biological experiments.

摘要

蛋白质-蛋白质相互作用(PPI)在几乎所有生命活动中都起着重要作用。许多蛋白质相互作用位点已通过生物学实验得到证实,但这些PPI位点识别方法既耗时又昂贵。在本研究中,开发了一种基于深度学习的PPI预测方法,名为DeepSG2PPI。首先,检索蛋白质序列信息并计算每个氨基酸残基的局部上下文信息。采用二维卷积神经网络(2D-CNN)模型从双通道编码结构中提取特征,其中嵌入了注意力机制以赋予关键特征更高的权重。其次,构建每个氨基酸残基的全局统计信息以及蛋白质与基因本体(GO)功能注释之间的关系图,并构建图嵌入向量以表示蛋白质的生物学特征。最后,将一个2D-CNN模型和两个1D-CNN模型相结合进行PPI预测。与现有算法的比较分析表明,DeepSG2PPI方法具有更好的性能。它提供了更准确有效的PPI位点预测,这将有助于降低生物学实验的成本和失败率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验