Suppr超能文献

Struct2Graph:一种基于图注意力网络的蛋白质-蛋白质相互作用结构预测方法。

Struct2Graph: a graph attention network for structure based predictions of protein-protein interactions.

机构信息

Division of Data and Decision Sciences, Tata Consultancy Services Research, Mumbai, India.

Systems and Control Engineering Group, Indian Institute of Technology, Bombay, India.

出版信息

BMC Bioinformatics. 2022 Sep 10;23(1):370. doi: 10.1186/s12859-022-04910-9.

Abstract

BACKGROUND

Development of new methods for analysis of protein-protein interactions (PPIs) at molecular and nanometer scales gives insights into intracellular signaling pathways and will improve understanding of protein functions, as well as other nanoscale structures of biological and abiological origins. Recent advances in computational tools, particularly the ones involving modern deep learning algorithms, have been shown to complement experimental approaches for describing and rationalizing PPIs. However, most of the existing works on PPI predictions use protein-sequence information, and thus have difficulties in accounting for the three-dimensional organization of the protein chains.

RESULTS

In this study, we address this problem and describe a PPI analysis based on a graph attention network, named Struct2Graph, for identifying PPIs directly from the structural data of folded protein globules. Our method is capable of predicting the PPI with an accuracy of 98.89% on the balanced set consisting of an equal number of positive and negative pairs. On the unbalanced set with the ratio of 1:10 between positive and negative pairs, Struct2Graph achieves a fivefold cross validation average accuracy of 99.42%. Moreover, Struct2Graph can potentially identify residues that likely contribute to the formation of the protein-protein complex. The identification of important residues is tested for two different interaction types: (a) Proteins with multiple ligands competing for the same binding area, (b) Dynamic protein-protein adhesion interaction. Struct2Graph identifies interacting residues with 30% sensitivity, 89% specificity, and 87% accuracy.

CONCLUSIONS

In this manuscript, we address the problem of prediction of PPIs using a first of its kind, 3D-structure-based graph attention network (code available at https://github.com/baranwa2/Struct2Graph ). Furthermore, the novel mutual attention mechanism provides insights into likely interaction sites through its unsupervised knowledge selection process. This study demonstrates that a relatively low-dimensional feature embedding learned from graph structures of individual proteins outperforms other modern machine learning classifiers based on global protein features. In addition, through the analysis of single amino acid variations, the attention mechanism shows preference for disease-causing residue variations over benign polymorphisms, demonstrating that it is not limited to interface residues.

摘要

背景

开发用于分析分子和纳米尺度上蛋白质-蛋白质相互作用 (PPIs) 的新方法,深入了解细胞内信号通路,并提高对蛋白质功能以及其他生物和非生物起源的纳米级结构的理解。最近在计算工具方面的进展,特别是涉及现代深度学习算法的工具,已被证明可以补充描述和合理化 PPIs 的实验方法。然而,大多数关于 PPI 预测的现有工作都使用蛋白质序列信息,因此难以解释蛋白质链的三维结构。

结果

在这项研究中,我们解决了这个问题,并描述了一种基于图注意网络的 PPI 分析,称为 Struct2Graph,用于直接从折叠蛋白球的结构数据中识别 PPI。我们的方法能够在由数量相等的正对和负对组成的平衡集中以 98.89%的准确率预测 PPI。在正对和负对比例为 1:10 的不平衡集中,Struct2Graph 实现了五倍交叉验证平均准确率 99.42%。此外,Struct2Graph 有可能识别出可能有助于形成蛋白质-蛋白质复合物的残基。通过两种不同的相互作用类型测试了重要残基的识别:(a) 具有多个配体竞争同一结合区域的蛋白质,(b) 动态蛋白质-蛋白质粘附相互作用。Struct2Graph 以 30%的灵敏度、89%的特异性和 87%的准确率识别相互作用残基。

结论

在本文中,我们使用一种新型的基于 3D 结构的图注意网络(可在 https://github.com/baranwa2/Struct2Graph 获得代码)解决了使用 PPI 的问题。此外,新颖的相互注意机制通过其无监督的知识选择过程提供了对可能的相互作用位点的洞察。这项研究表明,从单个蛋白质的图结构中学习到的相对低维特征嵌入优于基于全局蛋白质特征的其他现代机器学习分类器。此外,通过对单个氨基酸变异的分析,注意机制对致病残基变异的偏好超过良性多态性,表明它不仅限于界面残基。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ec7/9464414/30d2690e038d/12859_2022_4910_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验