Suppr超能文献

多个布尔网络中的常见吸引子

Common Attractors in Multiple Boolean Networks.

作者信息

Cao Yu, Pi Wenya, Lin Chun-Yu, Munzner Ulrike, Ohtomo Masahiro, Akutsu Tatsuya

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):2862-2873. doi: 10.1109/TCBB.2023.3268795. Epub 2023 Oct 9.

Abstract

Analyzing multiple networks is important to understand relevant features among different networks. Although many studies have been conducted for that purpose, not much attention has been paid to the analysis of attractors (i.e., steady states) in multiple networks. Therefore, we study common attractors and similar attractors in multiple networks to uncover hidden similarities and differences among networks using Boolean networks (BNs), where BNs have been used as a mathematical model of genetic networks and neural networks. We define three problems on detecting common attractors and similar attractors, and theoretically analyze the expected number of such objects for random BNs, where we assume that given networks have the same set of nodes (i.e., genes). We also present four methods for solving these problems. Computational experiments on randomly generated BNs are performed to demonstrate the efficiency of our proposed methods. In addition, experiments on a practical biological system, a BN model of the TGF- β signaling pathway, are performed. The result suggests that common attractors and similar attractors are useful for exploring tumor heterogeneity and homogeneity in eight cancers.

摘要

分析多个网络对于理解不同网络之间的相关特征很重要。尽管已经为此目的进行了许多研究,但对于多个网络中吸引子(即稳态)的分析关注较少。因此,我们使用布尔网络(BNs)研究多个网络中的共同吸引子和相似吸引子,以揭示网络之间隐藏的异同,其中布尔网络已被用作遗传网络和神经网络的数学模型。我们定义了三个关于检测共同吸引子和相似吸引子的问题,并从理论上分析了随机布尔网络中此类对象的预期数量,我们假设给定的网络具有相同的节点集(即基因)。我们还提出了四种解决这些问题的方法。对随机生成的布尔网络进行了计算实验,以证明我们所提出方法的有效性。此外,还对一个实际的生物系统,即转化生长因子-β信号通路的布尔网络模型进行了实验。结果表明,共同吸引子和相似吸引子有助于探索八种癌症中的肿瘤异质性和同质性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验