Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
Anal Chem. 2023 May 2;95(17):7053-7061. doi: 10.1021/acs.analchem.3c00846. Epub 2023 Apr 20.
False positives and negatives in bioanalytical assays remain a persistent problem. Herein, a multifunctional photoelectrochemical (PEC) biosensor based on ZnInS (ZIS)/ZnS quantum dots (QDs)@Au-Ag-reversed photocurrent of Cu-metal-organic framework (MOF) coupled with CRISPR/Cas-12a-shearing was innovatively developed for assay of dual targets. First, Cu-MOF as a good PEC material shows cathodic photocurrent. Then, numerous ZIS/ZnS QDs were assembled to the Au-Ag nanoparticles (NPs) to prepare a stable and highly amplified signal probe, which can just match the energy level of Cu-MOFs and realized the polarity-reversed photocurrent of Cu-MOF for the first time. As the empty-core nanostructure of Au-Ag NPs has a high specific surface area and low material density, the bimetallic nanocrystal can much increase the reaction rate and improve the redox efficiency. When target CEA-produced cDNA opened the hairpin DNA (HP1 DNA) on the electrode, the ZIS/ZnS QDs@Au-Ag signal probe was conjugated to the electrode via DNA hybridization, achieving a significantly reversed PEC current for CEA detection. Moreover, the specific binding of kanamycin/aptamer generated the acDNA (activator), which can activate the trans-cleavage activity of the CRISPR-CAS12a system on ssDNA, so the signal probe was sheared and caused the obvious decrease of PEC signal for kanamycin detection. The newly developed ZIS/ZnS QDs@Au-Ag NPs displayed excellent PEC properties and reversed photocurrent to MOF and were combined with the unique CRISPR-Cas12a system to achieve sensitive detection of dual targets, which can open a new polarity-reversed PEC sensing platform for rapid and accurate analysis of multiple targets and can effectively avoid false positives results in clinical testing.
生物分析测定中的假阳性和假阴性仍然是一个持续存在的问题。在此,我们创新性地开发了一种基于 ZnInS(ZIS)/ZnS 量子点(QD)@Au-Ag-反向光电流的多功能光电化学(PEC)生物传感器,该传感器结合了 CRISPR/Cas-12a 剪切,用于双重目标的测定。首先,Cu-MOF 作为一种良好的 PEC 材料显示出阴极光电流。然后,大量的 ZIS/ZnS QDs 被组装到 Au-Ag 纳米粒子(NPs)上,制备了一种稳定且高度放大信号的探针,该探针刚好与 Cu-MOFs 的能级相匹配,首次实现了 Cu-MOFs 的极性反转光电流。由于 Au-Ag NPs 的空芯纳米结构具有高的比表面积和低的材料密度,双金属纳米晶体可以大大提高反应速率,提高氧化还原效率。当目标 CEA 产生的 cDNA 打开电极上的发夹 DNA(HP1 DNA)时,ZIS/ZnS QDs@Au-Ag 信号探针通过 DNA 杂交与电极结合,实现了对 CEA 检测的显著反向 PEC 电流。此外,特异性结合的卡那霉素/适体产生了 acDNA(激活剂),它可以激活 CRISPR-CAS12a 系统对 ssDNA 的转切割活性,因此信号探针被剪切,导致 PEC 信号对卡那霉素检测的明显减少。新开发的 ZIS/ZnS QDs@Au-Ag NPs 表现出优异的 PEC 性能和对 MOF 的反向光电流,并与独特的 CRISPR-Cas12a 系统相结合,实现了对双重目标的敏感检测,为快速准确地分析多个目标开辟了新的极性反转 PEC 传感平台,并能有效地避免临床检测中的假阳性结果。