Nakamura Mitsutoshi, Hui Justin, Parkhurst Susan M
Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109.
Fac Rev. 2023 Mar 21;12:7. doi: 10.12703/r/12-7. eCollection 2023.
In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking. Interestingly, this latter property, the bending of actin filaments, is emerging as an exciting new feature for determining dynamic actin configurations and functions. Indeed, recent studies using assays have found that proteins including IQGAP, Cofilin, Septins, Anillin, α-Actinin, Fascin, and Myosins-alone or in combination-can influence the bending or curvature of actin filaments. This bending increases the number and types of dynamic assemblies that can be generated, as well as the spectrum of their functions. Intriguingly, in some cases, actin bending creates directionality within a cell, resulting in a chiral cell shape. This actin-dependent cell chirality is highly conserved in vertebrates and invertebrates and is essential for cell migration and breaking L-R symmetry of tissues/organs. Here, we review how different types of actin binding protein can bend actin filaments, induce curved filament geometries, and how they impact on cellular functions.
在许多细胞环境中,细胞内的肌动球蛋白网络必须产生定向力来执行诸如迁移和内吞作用等细胞任务,这些任务在正常发育过程中发挥着重要作用。已经鉴定出许多不同的肌动蛋白结合蛋白,它们形成线性或分支状肌动蛋白,并通过诸如成束、交联和解聚等活动来调节这些细丝,从而产生各种各样的功能性肌动蛋白组装体。肌动蛋白丝的螺旋性质使其能够通过解旋更好地承受拉伸应力,并且能够弯曲到很大的曲率而不折断。有趣的是,肌动蛋白丝的这种弯曲特性,正成为确定动态肌动蛋白构型和功能的一个令人兴奋的新特征。事实上,最近使用分析方法的研究发现,包括IQGAP、丝切蛋白、Septins、膜收缩蛋白、α-辅肌动蛋白、成束蛋白和肌球蛋白在内的蛋白质单独或组合使用时,都可以影响肌动蛋白丝的弯曲或曲率。这种弯曲增加了可产生的动态组装体的数量和类型,以及它们的功能范围。有趣的是,在某些情况下,肌动蛋白弯曲在细胞内产生方向性,导致细胞形状呈手性。这种依赖肌动蛋白的细胞手性在脊椎动物和无脊椎动物中高度保守,对于细胞迁移和打破组织/器官的左右对称性至关重要。在这里,我们综述了不同类型的肌动蛋白结合蛋白如何使肌动蛋白丝弯曲、诱导弯曲的细丝几何形状,以及它们如何影响细胞功能。