Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.
Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA.
Nature. 2022 Nov;611(7935):380-386. doi: 10.1038/s41586-022-05366-w. Epub 2022 Oct 26.
ATP-hydrolysis-coupled actin polymerization is a fundamental mechanism of cellular force generation. In turn, force and actin filament (F-actin) nucleotide state regulate actin dynamics by tuning F-actin's engagement of actin-binding proteins through mechanisms that are unclear. Here we show that the nucleotide state of actin modulates F-actin structural transitions evoked by bending forces. Cryo-electron microscopy structures of ADP-F-actin and ADP-P-F-actin with sufficient resolution to visualize bound solvent reveal intersubunit interfaces bridged by water molecules that could mediate filament lattice flexibility. Despite extensive ordered solvent differences in the nucleotide cleft, these structures feature nearly identical lattices and essentially indistinguishable protein backbone conformations that are unlikely to be discriminable by actin-binding proteins. We next introduce a machine-learning-enabled pipeline for reconstructing bent filaments, enabling us to visualize both continuous structural variability and side-chain-level detail. Bent F-actin structures reveal rearrangements at intersubunit interfaces characterized by substantial alterations of helical twist and deformations in individual protomers, transitions that are distinct in ADP-F-actin and ADP-P-F-actin. This suggests that phosphate rigidifies actin subunits to alter the bending structural landscape of F-actin. As bending forces evoke nucleotide-state dependent conformational transitions of sufficient magnitude to be detected by actin-binding proteins, we propose that actin nucleotide state can serve as a co-regulator of F-actin mechanical regulation.
ATP 水解偶联的肌动蛋白聚合是细胞力产生的基本机制。反过来,力和肌动蛋白丝(F-肌动蛋白)核苷酸状态通过调节 F-肌动蛋白与肌动蛋白结合蛋白的结合来调节肌动蛋白动力学,其机制尚不清楚。在这里,我们表明肌动蛋白的核苷酸状态调节由弯曲力引起的 F-肌动蛋白结构转变。具有足够分辨率以可视化结合溶剂的 ADP-F-肌动蛋白和 ADP-P-F-肌动蛋白的冷冻电子显微镜结构揭示了由水分子桥接的亚基界面,这些水分子可以介导丝状晶格的灵活性。尽管核苷酸裂缝中有广泛的有序溶剂差异,但这些结构具有几乎相同的晶格和几乎相同的蛋白质骨架构象,不太可能被肌动蛋白结合蛋白区分。接下来,我们引入了一种基于机器学习的弯曲丝重建管道,使我们能够可视化连续的结构变异性和侧链级别的细节。弯曲的 F-肌动蛋白结构揭示了亚基界面的重排,其特征是螺旋扭曲的实质性改变和单个原体的变形,在 ADP-F-肌动蛋白和 ADP-P-F-肌动蛋白中这些转变是不同的。这表明磷酸盐使肌动蛋白亚基僵化,从而改变 F-肌动蛋白的弯曲结构景观。由于弯曲力引起的核苷酸状态依赖性构象转变足以被肌动蛋白结合蛋白检测到,我们提出肌动蛋白核苷酸状态可以作为 F-肌动蛋白机械调节的协同调节剂。