肾癌中解偶联的甘油-3-磷酸穿梭系统表明,细胞质 GPD 对于支持脂质合成是必需的。
Uncoupled glycerol-3-phosphate shuttle in kidney cancer reveals that cytosolic GPD is essential to support lipid synthesis.
机构信息
Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
出版信息
Mol Cell. 2023 Apr 20;83(8):1340-1349.e7. doi: 10.1016/j.molcel.2023.03.023.
The glycerol-3-phosphate shuttle (G3PS) is a major NADH shuttle that regenerates reducing equivalents in the cytosol and produces energy in the mitochondria. Here, we demonstrate that G3PS is uncoupled in kidney cancer cells where the cytosolic reaction is ∼4.5 times faster than the mitochondrial reaction. The high flux through cytosolic glycerol-3-phosphate dehydrogenase (GPD) is required to maintain redox balance and support lipid synthesis. Interestingly, inhibition of G3PS by knocking down mitochondrial GPD (GPD2) has no effect on mitochondrial respiration. Instead, loss of GPD2 upregulates cytosolic GPD on a transcriptional level and promotes cancer cell proliferation by increasing glycerol-3-phosphate supply. The proliferative advantage of GPD2 knockdown tumor can be abolished by pharmacologic inhibition of lipid synthesis. Taken together, our results suggest that G3PS is not required to run as an intact NADH shuttle but is instead truncated to support complex lipid synthesis in kidney cancer.
甘油-3-磷酸穿梭(G3PS)是一种主要的 NADH 穿梭系统,可在细胞质中再生还原当量,并在线粒体中产生能量。在这里,我们证明 G3PS 在肾癌细胞中解偶联,其中细胞质反应比线粒体反应快约 4.5 倍。细胞质甘油-3-磷酸脱氢酶(GPD)的高通量是维持氧化还原平衡和支持脂质合成所必需的。有趣的是,通过敲低线粒体 GPD(GPD2)抑制 G3PS 对线粒体呼吸没有影响。相反,GPD2 的缺失会在转录水平上上调细胞质 GPD,并通过增加甘油-3-磷酸的供应促进癌细胞增殖。通过药理学抑制脂质合成可以消除 GPD2 敲低肿瘤的增殖优势。总之,我们的结果表明,G3PS 不需要作为完整的 NADH 穿梭系统运行,而是被截断以支持肾癌中的复杂脂质合成。
相似文献
Biochem Biophys Res Commun. 2022-9-17
引用本文的文献
Nat Metab. 2025-7-25
Signal Transduct Target Ther. 2025-6-27
Nat Metab. 2025-3
Signal Transduct Target Ther. 2025-1-24
Mol Metab. 2024-8
Exp Mol Med. 2024-5
本文引用的文献
J Inherit Metab Dis. 2021-7
Mol Cell. 2021-2-18
Cell Stem Cell. 2019-7-11