Suppr超能文献

肿瘤护理学研究中的大数据:科学现状。

Big Data in Oncology Nursing Research: State of the Science.

机构信息

Postdoctoral Scholar, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Nurse Scientist at Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, Massachusetts, USA and Instructor at Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Semin Oncol Nurs. 2023 Jun;39(3):151428. doi: 10.1016/j.soncn.2023.151428. Epub 2023 Apr 19.

Abstract

OBJECTIVE

To review the state of oncology nursing science as it pertains to big data. The authors aim to define and characterize big data, describe key considerations for accessing and analyzing big data, provide examples of analyses of big data in oncology nursing science, and highlight ethical considerations related to the collection and analysis of big data.

DATA SOURCES

Peer-reviewed articles published by investigators specializing in oncology, nursing, and related disciplines.

CONCLUSION

Big data is defined as data that are high in volume, velocity, and variety. To date, oncology nurse scientists have used big data to predict patient outcomes from clinician notes, identify distinct symptom phenotypes, and identify predictors of chemotherapy toxicity, among other applications. Although the emergence of big data and advances in computational methods provide new and exciting opportunities to advance oncology nursing science, several challenges are associated with accessing and using big data. Data security, research participant privacy, and the underrepresentation of minoritized individuals in big data are important concerns.

IMPLICATIONS FOR NURSING PRACTICE

With their unique focus on the interplay between the whole person, the environment, and health, nurses bring an indispensable perspective to the interpretation and application of big data research findings. Given the increasing ubiquity of passive data collection, all nurses should be taught the definition, characteristics, applications, and limitations of big data. Nurses who are trained in big data and advanced computational methods will be poised to contribute to guidelines and policies that preserve the rights of human research participants.

摘要

目的

回顾肿瘤护理学中与大数据相关的现状。作者旨在定义和描述大数据,描述访问和分析大数据的关键注意事项,提供肿瘤护理学中大数据分析的示例,并强调与大数据收集和分析相关的伦理考虑。

资料来源

专门从事肿瘤学、护理和相关学科的研究人员发表的同行评议文章。

结论

大数据是指具有高容量、高速率和多样化的数据。迄今为止,肿瘤护理科学家已经使用大数据从临床医生的笔记中预测患者的预后,识别不同的症状表型,并确定化疗毒性的预测因素等。尽管大数据的出现和计算方法的进步为推进肿瘤护理科学提供了新的令人兴奋的机会,但访问和使用大数据也存在一些挑战。数据安全、研究参与者隐私以及少数群体在大数据中的代表性不足是重要的关注点。

对护理实践的意义

护士专注于整个人、环境和健康之间的相互作用,为大数据研究结果的解释和应用带来了不可或缺的视角。鉴于被动数据收集的日益普及,所有护士都应该接受大数据的定义、特征、应用和局限性的教育。接受大数据和高级计算方法培训的护士将能够为保护人类研究参与者权利的准则和政策做出贡献。

相似文献

1
Big Data in Oncology Nursing Research: State of the Science.
Semin Oncol Nurs. 2023 Jun;39(3):151428. doi: 10.1016/j.soncn.2023.151428. Epub 2023 Apr 19.
2
A guide to understanding big data for the nurse scientist: A discursive paper.
Nurs Inq. 2024 Jul;31(3):e12648. doi: 10.1111/nin.12648. Epub 2024 Jun 12.
3
Big data science: A literature review of nursing research exemplars.
Nurs Outlook. 2017 Sep-Oct;65(5):549-561. doi: 10.1016/j.outlook.2016.11.021. Epub 2016 Dec 8.
6
Nursing Needs Big Data and Big Data Needs Nursing.
J Nurs Scholarsh. 2015 Sep;47(5):477-84. doi: 10.1111/jnu.12159. Epub 2015 Aug 19.
7
The Role of Researcher for Advanced Practice Nurses in Oncology: Challenges and Lessons Learned.
Semin Oncol Nurs. 2024 Jun;40(3):151634. doi: 10.1016/j.soncn.2024.151634. Epub 2024 Apr 10.
8
The Rise of Big Data in Oncology.
Semin Oncol Nurs. 2018 May;34(2):168-176. doi: 10.1016/j.soncn.2018.03.008. Epub 2018 Mar 30.
9
Pediatric Oncology Nursing Research in Low- and Middle-Income Countries: Exemplars from Three Regions.
Semin Oncol Nurs. 2021 Jun;37(3):151168. doi: 10.1016/j.soncn.2021.151168. Epub 2021 Jun 18.
10
The State of Data Science in Genomic Nursing.
Biol Res Nurs. 2020 Jul;22(3):309-318. doi: 10.1177/1099800420915991. Epub 2020 Apr 8.

引用本文的文献

1
Advancing Global Cancer Symptom Science: Insights and Strategies from the Inaugural Cancer Symptom Science Expert Meeting.
Semin Oncol Nurs. 2025 Aug;41(4):151905. doi: 10.1016/j.soncn.2025.151905. Epub 2025 Aug 5.
2
The data scientist as a mainstay of the tumor board: global implications and opportunities for the global south.
Front Digit Health. 2025 Feb 6;7:1535018. doi: 10.3389/fdgth.2025.1535018. eCollection 2025.

本文引用的文献

2
Ethical considerations for the use of consumer wearables in health research.
Digit Health. 2023 Feb 1;9:20552076231153740. doi: 10.1177/20552076231153740. eCollection 2023 Jan-Dec.
3
The EMory BrEast imaging Dataset (EMBED): A Racially Diverse, Granular Dataset of 3.4 Million Screening and Diagnostic Mammographic Images.
Radiol Artif Intell. 2023 Jan 4;5(1):e220047. doi: 10.1148/ryai.220047. eCollection 2023 Jan.
5
Epigenomic Links Between Social Determinants of Health and Symptoms: A Scoping Review.
Biol Res Nurs. 2023 Jul;25(3):404-416. doi: 10.1177/10998004221147300. Epub 2022 Dec 20.
6
Patients' experiences with cancer care in Switzerland: Results of a multicentre cross-sectional survey.
Eur J Cancer Care (Engl). 2022 Nov;31(6):e13705. doi: 10.1111/ecc.13705. Epub 2022 Sep 21.
7
Predictors of Unrelieved Symptoms in All of Us Research Program Participants With Chronic Conditions.
J Pain Symptom Manage. 2022 Dec;64(6):555-566. doi: 10.1016/j.jpainsymman.2022.08.018. Epub 2022 Sep 9.
8
Opportunities for computational tools in palliative care: Supporting patient needs and lowering burden.
Palliat Med. 2022 Sep;36(8):1168-1170. doi: 10.1177/02692163221122261.
9
Broad Consent-Are We Asking Enough?
Ethics Hum Res. 2022 Sep;44(5):22-31. doi: 10.1002/eahr.500140.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验