Suppr超能文献

临床医生理解和批判性评估机器学习研究指南:使用机器学习标准工具排除偏倚的清单(ROBUST-ML)

A clinician's guide to understanding and critically appraising machine learning studies: a checklist for Ruling Out Bias Using Standard Tools in Machine Learning (ROBUST-ML).

作者信息

Al-Zaiti Salah S, Alghwiri Alaa A, Hu Xiao, Clermont Gilles, Peace Aaron, Macfarlane Peter, Bond Raymond

机构信息

Department of Acute and Tertiary Care, Department of Emergency Medicine, and Division of Cardiology, University of Pittsburgh, Pittsburgh PA, USA.

Data Science Core, The Provost Office, University of Pittsburgh, Pittsburgh PA, USA.

出版信息

Eur Heart J Digit Health. 2022 Apr 12;3(2):125-140. doi: 10.1093/ehjdh/ztac016. eCollection 2022 Jun.

Abstract

Developing functional machine learning (ML)-based models to address unmet clinical needs requires unique considerations for optimal clinical utility. Recent debates about the rigours, transparency, explainability, and reproducibility of ML models, terms which are defined in this article, have raised concerns about their clinical utility and suitability for integration in current evidence-based practice paradigms. This featured article focuses on increasing the literacy of ML among clinicians by providing them with the knowledge and tools needed to understand and critically appraise clinical studies focused on ML. A checklist is provided for evaluating the rigour and reproducibility of the four ML building blocks: data curation, feature engineering, model development, and clinical deployment. Checklists like this are important for quality assurance and to ensure that ML studies are rigourously and confidently reviewed by clinicians and are guided by domain knowledge of the setting in which the findings will be applied. Bridging the gap between clinicians, healthcare scientists, and ML engineers can address many shortcomings and pitfalls of ML-based solutions and their potential deployment at the bedside.

摘要

开发基于功能机器学习(ML)的模型以满足未满足的临床需求,需要为实现最佳临床效用进行独特的考量。最近关于ML模型的严谨性、透明度、可解释性和可重复性(本文对这些术语进行了定义)的争论,引发了人们对其临床效用以及是否适合整合到当前循证实践范式中的担忧。这篇专题文章聚焦于提高临床医生对ML的认知水平,为他们提供理解和批判性评估专注于ML的临床研究所需的知识和工具。本文提供了一份清单,用于评估ML四个构建模块(数据管理、特征工程、模型开发和临床应用)的严谨性和可重复性。这样的清单对于质量保证很重要,能确保临床医生严格且自信地审查ML研究,并以研究结果应用场景的领域知识为指导。弥合临床医生、医疗保健科学家和ML工程师之间的差距,可以解决基于ML的解决方案及其在床边潜在应用中的许多缺点和陷阱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c9/9708024/3016f106dd7b/ztac016f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验