Nature. 2023 Jun;618(7964):264-269. doi: 10.1038/s41586-023-05954-4. Epub 2023 May 11.
Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date-including fermions, bosons and Abelian anyons-this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.
粒子不可分辨性是量子力学的一个基本原理。对于迄今为止观察到的所有基本粒子和准粒子——包括费米子、玻色子和阿贝尔任意子——这一原理保证了相同粒子的编织不会改变系统。然而,在二维空间中,存在一个有趣的可能性:非阿贝尔任意子的编织会导致拓扑简并波函数空间中的旋转。因此,它可以在不违反不可分辨性原理的情况下改变系统的可观测值。尽管非阿贝尔任意子有完善的数学描述和许多理论建议,但几十年来,它们的交换统计数据的实验观察仍然难以捉摸。在量子处理器上生成可控的多体量子态为探索这些基本现象提供了另一条途径。虽然传统固态平台上的努力通常涉及准粒子的哈密顿动力学,但超导量子处理器允许通过幺正门直接操纵多体波函数。基于稳定子码可以承载投影非阿贝尔 Ising 任意子的预测,我们实现了广义稳定子码和幺正协议来创建和编织它们。这使我们能够实验验证任意子的融合规则并编织它们以实现它们的统计。然后,我们研究了使用任意子进行量子计算的前景,并利用编织来创建编码三个逻辑量子位的任意子纠缠态。我们的工作提供了关于非阿贝尔编织的新见解,并且通过未来包含纠错以实现拓扑保护,可能为容错量子计算开辟了一条道路。