文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

2022 年,在埃塞俄比亚阿姆哈拉地区贡德尔大学综合和专科医院,使用机器学习预测接受抗逆转录病毒治疗的艾滋病毒患者的病毒学失败。

Machine learning to predict virological failure among HIV patients on antiretroviral therapy in the University of Gondar Comprehensive and Specialized Hospital, in Amhara Region, Ethiopia, 2022.

机构信息

Department of Health Informatics, College of Medicine and Health Sciences, School of Public Health, Arbaminch University, Arbaminch, Ethiopia.

Department of Health Informatics, Institute of Public Health, University of Gondar, Gondar, Ethiopia.

出版信息

BMC Med Inform Decis Mak. 2023 Apr 21;23(1):75. doi: 10.1186/s12911-023-02167-7.


DOI:10.1186/s12911-023-02167-7
PMID:37085851
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10122289/
Abstract

BACKGROUND: Treatment with effective antiretroviral therapy (ART) reduces viral load as well as HIV-related morbidity and mortality in HIV-positive patients. Despite the expanded availability of antiretroviral therapy around the world, virological failure remains a serious problem for HIV-positive patients. Thus, Machine learning predictive algorithms have the potential to improve the quality of care and predict the needs of HIV patients by analyzing huge amounts of data, and enhancing prediction capabilities. This study used different machine learning classification algorithms to predict the features that cause virological failure in HIV-positive patients. METHOD: An institution-based secondary data was used to conduct patients who were on antiretroviral therapy at the University of Gondar Comprehensive and Specialized Hospital from January 2020 to May 2022. Patients' data were extracted from the electronic database using a structured checklist and imported into Python version three software for data pre-processing and analysis. Then, seven supervised classification machine-learning algorithms for model development were trained. The performances of the predictive models were evaluated using accuracy, sensitivity, specificity, precision, f1-score, and AUC. Association rule mining was used to generate the best rule for the association between independent features and the target feature. RESULT: Out of 5264 study participants, 1893 (35.06%) males and 3371 (64.04%) females were included. The random forest classifier (sensitivity = 1.00, precision = 0.987, f1-score = 0.993, AUC = 0.9989) outperformed in predicting virological failure among all selected classifiers. Random forest feature importance and association rules identified the top eight predictors (Male, younger age, longer duration on ART, not taking CPT, not taking TPT, secondary educational status, TDF-3TC-EFV, and low CD4 counts) of virological failure based on the importance ranking, and the CD-4 count was recognized as the most important predictor feature. CONCLUSION: The random forest classifier outperformed in predicting and identifying the relevant predictors of virological failure. The results of this study could be very helpful to health professionals in determining the optimal virological outcome.

摘要

背景:有效的抗逆转录病毒疗法(ART)的治疗可降低 HIV 阳性患者的病毒载量以及与 HIV 相关的发病率和死亡率。尽管世界各地抗逆转录病毒疗法的可及性不断扩大,但病毒学失败仍然是 HIV 阳性患者的一个严重问题。因此,机器学习预测算法通过分析大量数据,提高预测能力,有潜力改善护理质量并预测 HIV 患者的需求。本研究使用不同的机器学习分类算法来预测导致 HIV 阳性患者病毒学失败的特征。

方法:本研究使用基于机构的二次数据,对 2020 年 1 月至 2022 年 5 月在贡德尔大学综合和专科医院接受抗逆转录病毒治疗的患者进行了研究。使用结构化检查表从电子数据库中提取患者数据,并将其导入 Python 版本 3 软件进行数据预处理和分析。然后,训练了七种有监督分类机器学习算法用于模型开发。使用准确性、敏感性、特异性、精度、f1 分数和 AUC 来评估预测模型的性能。使用关联规则挖掘生成独立特征与目标特征之间的最佳关联规则。

结果:在 5264 名研究参与者中,包括 1893 名(35.06%)男性和 3371 名(64.04%)女性。随机森林分类器(敏感性=1.00、精度=0.987、f1 分数=0.993、AUC=0.9989)在所有选定的分类器中表现最佳,可预测病毒学失败。随机森林特征重要性和关联规则根据重要性排名确定了病毒学失败的前八个预测因子(男性、年龄较小、ART 持续时间较长、未服用 CPT、未服用 TPT、中等教育程度、TDF-3TC-EFV 和低 CD4 计数),CD4 计数被认为是最重要的预测因子特征。

结论:随机森林分类器在预测和识别病毒学失败的相关预测因子方面表现出色。本研究的结果对于卫生专业人员确定最佳病毒学结果可能非常有帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/63ac32290d3e/12911_2023_2167_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/c0dcf3368d04/12911_2023_2167_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/f2b9fb69ac87/12911_2023_2167_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/ddf001a6acef/12911_2023_2167_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/3f14b0433866/12911_2023_2167_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/c6b79a87506f/12911_2023_2167_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/ae0095cb4db5/12911_2023_2167_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/5261d72028fc/12911_2023_2167_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/702bdef1f4ed/12911_2023_2167_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/da1eb4ed4795/12911_2023_2167_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/3909d5eecac5/12911_2023_2167_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/63ac32290d3e/12911_2023_2167_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/c0dcf3368d04/12911_2023_2167_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/f2b9fb69ac87/12911_2023_2167_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/ddf001a6acef/12911_2023_2167_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/3f14b0433866/12911_2023_2167_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/c6b79a87506f/12911_2023_2167_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/ae0095cb4db5/12911_2023_2167_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/5261d72028fc/12911_2023_2167_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/702bdef1f4ed/12911_2023_2167_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/da1eb4ed4795/12911_2023_2167_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/3909d5eecac5/12911_2023_2167_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/10122289/63ac32290d3e/12911_2023_2167_Fig11_HTML.jpg

相似文献

[1]
Machine learning to predict virological failure among HIV patients on antiretroviral therapy in the University of Gondar Comprehensive and Specialized Hospital, in Amhara Region, Ethiopia, 2022.

BMC Med Inform Decis Mak. 2023-4-21

[2]
Incidence and predictors of treatment failure among children on first-line antiretroviral therapy in Amhara Region Referral Hospitals, northwest Ethiopia 2018: A retrospective study.

PLoS One. 2019-5-1

[3]
Determinants of virological failure among HIV clients on second-line antiretroviral treatment at Felege-hiwot and University of Gondar comprehensive specialized hospitals in the Amhara Region, Northwest Ethiopia: A case-control study.

PLoS One. 2024

[4]
A comparative study of logistic regression based machine learning techniques for prediction of early virological suppression in antiretroviral initiating HIV patients.

BMC Med Inform Decis Mak. 2018-9-4

[5]
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.

BMC Public Health. 2024-6-28

[6]
Predictive factors associated with virological failure among adult patients living with HIV on first-line highly active antiretroviral therapy in Southeast Oromia, Ethiopia: a case-control study.

BMJ Open. 2025-4-17

[7]
Predicting CD4 count changes among patients on antiretroviral treatment: Application of data mining techniques.

Comput Methods Programs Biomed. 2017-9-21

[8]
Prevalence and associated factors of treatment failure among HIV/AIDS patients on HAART attending University of Gondar Referral Hospital Northwest Ethiopia.

BMC Immunol. 2018-12-17

[9]
Prediction of stunting and its socioeconomic determinants among adolescent girls in Ethiopia using machine learning algorithms.

PLoS One. 2025-1-24

[10]
Incidence and predictors of virological failure among adult HIV patients on first-line antiretroviral therapy in Amhara regional referral hospitals; Ethiopia: a retrospective follow-up study.

BMC Infect Dis. 2020-7-1

引用本文的文献

[1]
Clinical Determinants Associated With Viral Load Count Among Adult TB/HIV Co-Infected Patients: A Linear Mixed-Effects Model Analysis.

Adv Virol. 2025-8-11

[2]
Predicting antiretroviral therapy adherence status of adult HIV-positive patients using machine-learning Northwest, Ethiopia, 2025.

BMC Med Inform Decis Mak. 2025-7-10

[3]
Machine-learning algorithm to predict home delivery after antenatal care visit among reproductive age women in East Africa.

Front Glob Womens Health. 2025-6-5

[4]
Predictors of Longitudinal Viral Load count and Survival Time to Death Among Adult TB/HIV Coinfected Patients Treated at Two Selected Amhara Region Comprehensive Specialized Hospitals, Ethiopia.

Health Sci Rep. 2025-6-17

[5]
Triaging Clients at Risk of Disengagement from HIV Care: Application of a Predictive Model to Clinical Trial Data in South Africa.

Risk Manag Healthc Policy. 2025-5-16

[6]
Predictive factors associated with virological failure among adult patients living with HIV on first-line highly active antiretroviral therapy in Southeast Oromia, Ethiopia: a case-control study.

BMJ Open. 2025-4-17

[7]
Development of machine learning algorithms to predict viral load suppression among HIV patients in Conakry (Guinea).

Front Artif Intell. 2025-3-19

[8]
Using machine learning to predict poor adherence to antiretroviral therapy among adolescents with HIV in low resource settings.

AIDS. 2025-7-15

[9]
Incidence Rate, Survival Rate, and Predictors for Virological Failure Among Adult TB/HIV Coinfected Clients.

J Trop Med. 2025-2-15

[10]
Performance evaluation and comparative analysis of different machine learning algorithms in predicting postnatal care utilization: Evidence from the ethiopian demographic and health survey 2016.

PLOS Digit Health. 2025-1-9

本文引用的文献

[1]
Applying machine learning and predictive modeling to retention and viral suppression in South African HIV treatment cohorts.

Sci Rep. 2022-7-26

[2]
Detection of HIV Virologic Failure and Switch to Second-Line Therapy: A Systematic Review and Meta-analysis of Data From Sub-Saharan Africa.

Open Forum Infect Dis. 2022-3-9

[3]
The impact of tuberculosis co-infection on virological failure among adults living with HIV in Ethiopia: A systematic review and -analysis.

J Clin Tuberc Other Mycobact Dis. 2022-3-4

[4]
Prediction of HIV status based on socio-behavioural characteristics in East and Southern Africa.

PLoS One. 2022

[5]
Research on expansion and classification of imbalanced data based on SMOTE algorithm.

Sci Rep. 2021-12-15

[6]
An Insider Data Leakage Detection Using One-Hot Encoding, Synthetic Minority Oversampling and Machine Learning Techniques.

Entropy (Basel). 2021-9-27

[7]
Determinants of first-line antiretroviral treatment failure among adult patients on treatment in Mettu Karl Specialized Hospital, South West Ethiopia; a case control study.

PLoS One. 2021

[8]
Determinants of first-line antiretroviral treatment failure among adult HIV patients at Nekemte Specialized Hospital, Western Ethiopia: Unmatched case-control study.

SAGE Open Med. 2021-6-30

[9]
Rate and predictors of HIV virological failure among adults on first-line antiretroviral treatment in Dar Es Salaam, Tanzania.

J Infect Dev Ctries. 2021-6-30

[10]
Predicting HIV drug resistance using weighted machine learning method at target protein sequence-level.

Mol Divers. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索