Makerere University Infectious Diseases Institute, P.O. Box 7072, Kampala, Uganda.
Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda.
BMC Med Inform Decis Mak. 2018 Sep 4;18(1):77. doi: 10.1186/s12911-018-0659-x.
Treatment with effective antiretroviral therapy (ART) lowers morbidity and mortality among HIV positive individuals. Effective highly active antiretroviral therapy (HAART) should lead to undetectable viral load within 6 months of initiation of therapy. Failure to achieve and maintain viral suppression may lead to development of resistance and increase the risk of viral transmission. In this paper three logistic regression based machine learning approaches are developed to predict early virological outcomes using easily measurable baseline demographic and clinical variables (age, body weight, sex, TB disease status, ART regimen, viral load, CD4 count). The predictive performance and generalizability of the approaches are compared.
The multitask temporal logistic regression (MTLR), patient specific survival prediction (PSSP) and simple logistic regression (SLR) models were developed and validated using the IDI research cohort data and predictive performance tested on an external dataset from the EFV cohort. The model calibration and discrimination plots, discriminatory measures (AUROC, F1) and overall predictive performance (brier score) were assessed.
The MTLR model outperformed the PSSP and SLR models in terms of goodness of fit (RMSE = 0.053, 0.1, and 0.14 respectively), discrimination (AUROC = 0.92, 0.75 and 0.53 respectively) and general predictive performance (Brier score= 0.08, 0.19, 0.11 respectively). The predictive importance of variables varied with time after initiation of ART. The final MTLR model accurately (accuracy = 92.9%) predicted outcomes in the external (EFV cohort) dataset with satisfactory discrimination (0.878) and a low (6.9%) false positive rate.
Multitask Logistic regression based models are capable of accurately predicting early virological suppression using readily available baseline demographic and clinical variables and could be used to derive a risk score for use in resource limited settings.
有效的抗逆转录病毒疗法(ART)可降低 HIV 阳性个体的发病率和死亡率。有效的高效抗逆转录病毒疗法(HAART)应在开始治疗后 6 个月内使病毒载量达到不可检测水平。未能实现和维持病毒抑制可能导致耐药性的发展,并增加病毒传播的风险。在本文中,我们开发了三种基于逻辑回归的机器学习方法,以使用易于测量的基线人口统计学和临床变量(年龄、体重、性别、结核病状况、ART 方案、病毒载量、CD4 计数)预测早期病毒学结果。比较了这些方法的预测性能和泛化能力。
使用 IDI 研究队列数据开发和验证了多任务时间逻辑回归(MTLR)、患者特定生存预测(PSSP)和简单逻辑回归(SLR)模型,并在 EFV 队列的外部数据集上测试了预测性能。评估了模型校准和判别图、判别指标(AUROC、F1)和整体预测性能(Brier 得分)。
MTLR 模型在拟合优度(RMSE=0.053、0.1 和 0.14)、判别(AUROC=0.92、0.75 和 0.53)和整体预测性能(Brier 得分=0.08、0.19 和 0.11)方面均优于 PSSP 和 SLR 模型。变量的预测重要性随 ART 开始后时间的变化而变化。最终的 MTLR 模型在外部(EFV 队列)数据集中准确(准确率=92.9%)预测了结果,具有令人满意的判别力(0.878)和较低的(6.9%)假阳性率。
基于多任务逻辑回归的模型能够使用现成的基线人口统计学和临床变量准确预测早期病毒学抑制,可用于在资源有限的环境中制定风险评分。