Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
Biomedical Innovations Building, Orthopaedic Research Laboratories 0200, 240 Pasteur Drive, Palo Alto, CA, 94304, USA.
Stem Cell Res Ther. 2023 Apr 21;14(1):99. doi: 10.1186/s13287-023-03260-4.
Continuous cross talk between MSCs and macrophages is integral to acute and chronic inflammation resulting from contaminated polyethylene particles (cPE); however, the effect of this inflammatory microenvironment on mitochondrial metabolism has not been fully elucidated. We hypothesized that (a) exposure to cPE leads to impaired mitochondrial metabolism and glycolytic reprogramming and (b) macrophages play a key role in this pathway.
We cultured MSCs with/without uncommitted M0 macrophages, with/without cPE in 3-dimensional gelatin methacrylate (3D GelMA) constructs/scaffolds. We evaluated mitochondrial function (membrane potential and reactive oxygen species-ROS production), metabolic pathways for adenosine triphosphate (ATP) production (glycolysis or oxidative phosphorylation) and response to stress mechanisms. We also studied macrophage polarization toward the pro-inflammatory M1 or the anti-inflammatory M2 phenotype and the osteogenic differentiation of MSCs.
Exposure to cPE impaired mitochondrial metabolism of MSCs; addition of M0 macrophages restored healthy mitochondrial function. Macrophages exposed to cPE-induced glycolytic reprogramming, but also initiated a response to this stress to restore mitochondrial biogenesis and homeostatic oxidative phosphorylation. Uncommitted M0 macrophages in coculture with MSC polarized to both M1 and M2 phenotypes. Osteogenesis was comparable among groups after 21 days.
This work confirmed that cPE exposure triggers impaired mitochondrial metabolism and glycolytic reprogramming in a 3D coculture model of MSCs and macrophages and demonstrated that macrophages cocultured with MSCs undergo metabolic changes to maintain energy production and restore homeostatic metabolism.
间充质干细胞(MSCs)与巨噬细胞之间的持续串扰是由污染的聚乙烯颗粒(cPE)引起的急性和慢性炎症的关键,然而,这种炎症微环境对线粒体代谢的影响尚未完全阐明。我们假设(a)暴露于 cPE 会导致线粒体代谢和糖酵解重编程受损,(b)巨噬细胞在这一途径中发挥关键作用。
我们在 3 维明胶甲基丙烯酸酯(3D GelMA)构建体/支架中培养有/无未分化 M0 巨噬细胞的 MSC,有/无 cPE。我们评估了线粒体功能(膜电位和活性氧物质-ROS 产生)、三磷酸腺苷(ATP)产生的代谢途径(糖酵解或氧化磷酸化)以及应激机制的反应。我们还研究了巨噬细胞向促炎 M1 或抗炎 M2 表型的极化以及 MSC 的成骨分化。
暴露于 cPE 会损害 MSC 的线粒体代谢;添加 M0 巨噬细胞可恢复健康的线粒体功能。暴露于 cPE 的巨噬细胞发生糖酵解重编程,但也启动了对这种应激的反应,以恢复线粒体生物发生和稳态氧化磷酸化。与 MSC 共培养的未分化 M0 巨噬细胞向 M1 和 M2 表型两极化。21 天后,各组间的成骨作用相当。
这项工作证实,cPE 暴露在 MSC 和巨噬细胞的 3D 共培养模型中引发了受损的线粒体代谢和糖酵解重编程,并表明与 MSC 共培养的巨噬细胞发生代谢变化以维持能量产生并恢复稳态代谢。