Suppr超能文献

范可尼贫血相关染色体放射状形成依赖于 POLθ 介导的替代性末端连接。

Fanconi anemia-associated chromosomal radial formation is dependent on POLθ-mediated alternative end joining.

机构信息

Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Cell Rep. 2023 May 30;42(5):112428. doi: 10.1016/j.celrep.2023.112428. Epub 2023 Apr 21.

Abstract

Activation of the Fanconi anemia (FA) pathway after treatment with mitomycin C (MMC) is essential for preventing chromosome translocations termed "radials." When replication forks stall at MMC-induced interstrand crosslinks (ICLs), the FA pathway is activated to orchestrate ICL unhooking and repair of the DNA break intermediates. However, in FA-deficient cells, how ICL-associated breaks are resolved in a manner that leads to radials is unclear. Here, we demonstrate that MMC-induced radials are dependent on DNA polymerase theta (POLθ)-mediated alternative end joining (A-EJ). Specifically, we show that radials observed in FANCD2 cells are dependent on POLθ and DNA ligase III and occur independently of classical non-homologous end joining. Furthermore, treatment of FANCD2 cells with POLθ inhibitors abolishes radials and leads to the accumulation of breaks co-localizing with common fragile sites. Uniformly, these observations implicate A-EJ in radial formation and provide mechanistic insights into the treatment of FA pathway-deficient cancers with POLθ inhibitors.

摘要

当用丝裂霉素 C(MMC)处理时,范可尼贫血(FA)途径的激活对于防止称为“射线”的染色体易位是必不可少的。当复制叉在 MMC 诱导的链间交联(ICL)处停滞时,FA 途径被激活以协调 ICL 解钩和 DNA 断裂中间体的修复。然而,在 FA 缺陷细胞中,ICL 相关断裂如何以导致射线的方式解决尚不清楚。在这里,我们证明 MMC 诱导的射线依赖于 DNA 聚合酶θ(POLθ)介导的替代末端连接(A-EJ)。具体来说,我们表明,在 FANCD2 细胞中观察到的射线依赖于 POLθ 和 DNA 连接酶 III,并且不依赖于经典的非同源末端连接。此外,用 POLθ 抑制剂处理 FANCD2 细胞会消除射线并导致与常见脆弱位点共定位的断裂积累。一致地,这些观察结果表明 A-EJ 参与了射线的形成,并为用 POLθ 抑制剂治疗 FA 途径缺陷型癌症提供了机制上的见解。

相似文献

1
Fanconi anemia-associated chromosomal radial formation is dependent on POLθ-mediated alternative end joining.
Cell Rep. 2023 May 30;42(5):112428. doi: 10.1016/j.celrep.2023.112428. Epub 2023 Apr 21.
2
Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.
PLoS Genet. 2016 Jan 14;12(1):e1005792. doi: 10.1371/journal.pgen.1005792. eCollection 2016 Jan.
4
FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks.
Cell Rep. 2014 May 22;7(4):1030-8. doi: 10.1016/j.celrep.2014.03.069. Epub 2014 May 1.
5
FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair.
Cell Rep. 2014 May 22;7(4):1039-47. doi: 10.1016/j.celrep.2014.04.005. Epub 2014 May 1.
6
Beyond interstrand crosslinks repair: contribution of FANCD2 and other Fanconi Anemia proteins to the replication of DNA.
Mutat Res. 2018 Mar;808:83-92. doi: 10.1016/j.mrfmmm.2017.09.004. Epub 2017 Sep 14.
9
Coordination of the recruitment of the FANCD2 and PALB2 Fanconi anemia proteins by an ubiquitin signaling network.
Chromosoma. 2017 Jun;126(3):417-430. doi: 10.1007/s00412-016-0602-9. Epub 2016 Jun 8.
10
Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells.
Cell Cycle. 2014;13(10):1540-50. doi: 10.4161/cc.28476. Epub 2014 Mar 12.

本文引用的文献

1
Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer.
Nature. 2022 Dec;612(7940):495-502. doi: 10.1038/s41586-022-05253-4. Epub 2022 Nov 30.
2
SCAI promotes error-free repair of DNA interstrand crosslinks via the Fanconi anemia pathway.
EMBO Rep. 2022 Apr 5;23(4):e53639. doi: 10.15252/embr.202153639. Epub 2022 Feb 14.
3
An update on Fanconi anemia: Clinical, cytogenetic and molecular approaches (Review).
Biomed Rep. 2021 Sep;15(3):74. doi: 10.3892/br.2021.1450. Epub 2021 Jul 15.
4
A first-in-class Polymerase Theta Inhibitor selectively targets Homologous-Recombination-Deficient Tumors.
Nat Cancer. 2021 Jun;2(6):598-610. doi: 10.1038/s43018-021-00203-x. Epub 2021 Jun 17.
5
Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance.
Nat Commun. 2021 Jun 17;12(1):3636. doi: 10.1038/s41467-021-23463-8.
6
Chromosome Instability in Fanconi Anemia: From Breaks to Phenotypic Consequences.
Genes (Basel). 2020 Dec 21;11(12):1528. doi: 10.3390/genes11121528.
7
Targeting the DNA Repair Enzyme Polymerase θ in Cancer Therapy.
Trends Cancer. 2021 Feb;7(2):98-111. doi: 10.1016/j.trecan.2020.09.007. Epub 2020 Oct 24.
8
Suppression of non-homologous end joining does not rescue DNA repair defects in Fanconi anemia patient cells.
Cell Cycle. 2020 Oct;19(19):2553-2561. doi: 10.1080/15384101.2020.1810394. Epub 2020 Aug 30.
9
Structural insight into FANCI-FANCD2 monoubiquitination.
Essays Biochem. 2020 Oct 26;64(5):807-817. doi: 10.1042/EBC20200001.
10
Distinct roles of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links.
Genes Dev. 2020 Jun 1;34(11-12):832-846. doi: 10.1101/gad.336446.120. Epub 2020 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验