Suppr超能文献

通过空位工程和空间限制的协同效应提高硒化铁的钠存储性能。

Boosting the sodium storage performance of iron selenides by a synergetic effect of vacancy engineering and spatial confinement.

作者信息

Wang Peng, Chen Yuxiang, Liao Xiangyue, Zheng Qiaoji, Zhao Ruyi, Lam Kwok-Ho, Lin Dunmin

机构信息

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

出版信息

J Colloid Interface Sci. 2024 Feb;655:748-759. doi: 10.1016/j.jcis.2023.11.074. Epub 2023 Nov 13.

Abstract

Recently, iron selenides have been considered as one of the most promising candidates for the anodes of sodium-ion batteries (SIBs) due to their cost-effectiveness and high theoretical capacity; however, their practical application is limited by poor conductivity, large volume variation and slow reaction kinetics during electrochemical reactions. In this work, spatially dual-carbon-confined V-FeSeS/FeSeS nanohybrids with abundant Se vacancies (V-FeSeS/FeSeS@NSC@rGO) are constructed via anion doping and carbon confinement engineering. The three-dimensional crosslinked carbon network composed of the nitrogen-doped carbon support derived from polyacrylic acid (PAA) and reduced graphene enhances the electronic conductivity, provides abundant channels for ion/electron transfer, ensures the structure integrity, and alleviates the agglomeration, pulverization and volume change of active material during the chemical reactions. Moreover, the introduction of S into iron selenides induces a large number of Se vacancies and regulates the electron density around iron atoms, synergistically improving the conductivity of the material and reducing the Na diffusion barrier. Based on the aforementioned features, the as-synthesized V-FeSeS/FeSeS@NSC@rGO electrode possesses excellent electrochemical properties, exhibiting the satisfactory specific capacity of 630.1 mA h g after 160 cycles at 0.5 A/g and the reversible capacity of 319.8 mA h g after 500 cycles at 3 A/g with the low-capacity attenuation of 0.016 % per cycle. This investigation provides a feasible approach to develop high-performance anodes for SIBs via a synergetic strategy of vacancy engineering and carbon confinement.

摘要

最近,硒化铁因其成本效益和高理论容量而被认为是钠离子电池(SIBs)阳极最有前途的候选材料之一;然而,它们的实际应用受到电导率差、体积变化大以及电化学反应过程中反应动力学缓慢的限制。在这项工作中,通过阴离子掺杂和碳限制工程构建了具有丰富硒空位的空间双碳限制V-FeSeS/FeSeS纳米杂化物(V-FeSeS/FeSeS@NSC@rGO)。由源自聚丙烯酸(PAA)的氮掺杂碳载体和还原氧化石墨烯组成的三维交联碳网络提高了电子导电性,为离子/电子转移提供了丰富的通道,确保了结构完整性,并减轻了化学反应过程中活性材料的团聚、粉碎和体积变化。此外,将硫引入硒化铁中会诱导大量硒空位并调节铁原子周围的电子密度,协同提高材料的导电性并降低钠扩散势垒。基于上述特性,合成的V-FeSeS/FeSeS@NSC@rGO电极具有优异的电化学性能,在0.5 A/g下循环160次后表现出令人满意的比容量630.1 mA h g,在3 A/g下循环500次后可逆容量为319.8 mA h g,每循环的低容量衰减为0.016%。这项研究提供了一种通过空位工程和碳限制的协同策略来开发高性能SIBs阳极的可行方法。

相似文献

1
Boosting the sodium storage performance of iron selenides by a synergetic effect of vacancy engineering and spatial confinement.
J Colloid Interface Sci. 2024 Feb;655:748-759. doi: 10.1016/j.jcis.2023.11.074. Epub 2023 Nov 13.
2
Heterogeneous engineering and carbon confinement strategy to synergistically boost the sodium storage performance of transition metal selenides.
J Colloid Interface Sci. 2024 Jul;665:355-364. doi: 10.1016/j.jcis.2024.03.107. Epub 2024 Mar 16.
3
Rod-like Ni-CoS@NC@C: Structural design, heteroatom doping and carbon confinement engineering to synergistically boost sodium storage performance.
J Colloid Interface Sci. 2024 Jun 15;664:400-408. doi: 10.1016/j.jcis.2024.03.056. Epub 2024 Mar 11.
4
Multilevel spatial confinement of transition metal selenides porous microcubes for efficient and stable potassium storage.
J Colloid Interface Sci. 2023 Aug 15;644:10-18. doi: 10.1016/j.jcis.2023.04.035. Epub 2023 Apr 11.
5
Enhanced redox kinetics in hierarchical tubular FeSe by incorporating Se quantum dots towards high-performance sodium-ion batteries.
J Colloid Interface Sci. 2024 Aug;667:303-311. doi: 10.1016/j.jcis.2024.04.086. Epub 2024 Apr 14.
6
Anion Doping and Dual-Carbon Confinement Strategies to Synergistically Boost the Sodium Storage Performance of Cobalt-Based Sulfides.
ACS Appl Mater Interfaces. 2024 Oct 2;16(39):52210-52219. doi: 10.1021/acsami.4c09171. Epub 2024 Sep 17.
7
Rational nanostructured FeSe wrapped in nitrogen-doped carbon shell for high-rate capability and long cycling sodium-ion storage.
J Colloid Interface Sci. 2022 Sep 15;622:840-848. doi: 10.1016/j.jcis.2022.04.171. Epub 2022 May 4.
8
Carbon Fibers Embedded With Iron Selenide (Fe Se ) as Anode for High-Performance Sodium and Potassium Ion Batteries.
Front Chem. 2020 Jun 3;8:408. doi: 10.3389/fchem.2020.00408. eCollection 2020.
9
SnSe /FeSe Nanocubes Capsulated in Nitrogen-Doped Carbon Realizing Stable Sodium-Ion Storage at Ultrahigh Rate.
Small Methods. 2021 Sep;5(9):e2100437. doi: 10.1002/smtd.202100437. Epub 2021 Aug 16.
10
Constructing Three-Dimensional Porous Carbon Framework Embedded with FeSe Nanoparticles as an Anode Material for Rechargeable Batteries.
ACS Appl Mater Interfaces. 2018 Nov 14;10(45):38862-38871. doi: 10.1021/acsami.8b11479. Epub 2018 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验