Suppr超能文献

深度伪造对说话者和面部识别的威胁:工具与攻击途径概述

Deepfakes as a threat to a speaker and facial recognition: An overview of tools and attack vectors.

作者信息

Firc Anton, Malinka Kamil, Hanáček Petr

机构信息

Brno University of Technology, Božetěchova 2, Brno, 612 00, Czech Republic.

出版信息

Heliyon. 2023 Apr 3;9(4):e15090. doi: 10.1016/j.heliyon.2023.e15090. eCollection 2023 Apr.

Abstract

Deepfakes present an emerging threat in cyberspace. Recent developments in machine learning make deepfakes highly believable, and very difficult to differentiate between what is real and what is fake. Not only humans but also machines struggle to identify deepfakes. Current speaker and facial recognition systems might be easily fooled by carefully prepared synthetic media - deepfakes. We provide a detailed overview of the state-of-the-art deepfake creation and detection methods for selected visual and audio domains. In contrast to other deepfake surveys, we focus on the threats that deepfakes represent to biometrics systems (e.g., spoofing). We discuss both facial and speech deepfakes, and for each domain, we define deepfake categories and their differences. For each deepfake category, we provide an overview of available tools for creation, datasets, and detection methods. Our main contribution is a definition of attack vectors concerning the differences between categories and reported real-world attacks to evaluate each category's threats to selected categories of biometrics systems.

摘要

深度伪造在网络空间中构成了一种新出现的威胁。机器学习的最新进展使得深度伪造极具可信度,而且很难区分真实与虚假内容。不仅人类难以识别深度伪造,机器也面临同样的难题。当前的语音和面部识别系统可能很容易被精心制作的合成媒体——深度伪造所欺骗。我们详细概述了针对选定视觉和音频领域的最先进深度伪造创建和检测方法。与其他深度伪造调查不同,我们关注深度伪造对生物识别系统构成的威胁(例如,欺骗)。我们讨论了面部和语音深度伪造,并且针对每个领域,我们定义了深度伪造类别及其差异。对于每个深度伪造类别,我们概述了可用的创建工具、数据集和检测方法。我们的主要贡献是定义了与类别差异相关的攻击向量,并报告了现实世界中的攻击案例,以评估每个类别对选定生物识别系统类别的威胁。

相似文献

2
Audio deepfakes: A survey.音频深度伪造:一项调查。
Front Big Data. 2023 Jan 9;5:1001063. doi: 10.3389/fdata.2022.1001063. eCollection 2022.
3
A Review of Image Processing Techniques for Deepfakes.深度伪造的图像处理技术综述。
Sensors (Basel). 2022 Jun 16;22(12):4556. doi: 10.3390/s22124556.
6
Countering Malicious DeepFakes: Survey, Battleground, and Horizon.对抗恶意深度伪造:综述、战场与展望
Int J Comput Vis. 2022;130(7):1678-1734. doi: 10.1007/s11263-022-01606-8. Epub 2022 May 4.

本文引用的文献

1
Learning Disentangled Representation for One-Shot Progressive Face Swapping.用于一次性渐进式面部交换的学习解缠表示
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):8348-8364. doi: 10.1109/TPAMI.2024.3404334. Epub 2024 Nov 6.
4
FSGANv2: Improved Subject Agnostic Face Swapping and Reenactment.FSGANv2:改进的与主体无关的面部交换和重演
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):560-575. doi: 10.1109/TPAMI.2022.3155571. Epub 2022 Dec 5.
9
Multi-View Face Synthesis via Progressive Face Flow.基于递进人脸流的多视角人脸合成。
IEEE Trans Image Process. 2021;30:6024-6035. doi: 10.1109/TIP.2021.3090658. Epub 2021 Jul 1.
10
InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs.InterFaceGAN:解释 GAN 学习到的解缠面部表示。
IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):2004-2018. doi: 10.1109/TPAMI.2020.3034267. Epub 2022 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验