Suppr超能文献

在中等盐度条件下,利用气体扩散生物阴极在三室电池中由一氧化碳微生物电合成乙酸盐。

Microbial electrosynthesis of acetate from CO in three-chamber cells with gas diffusion biocathode under moderate saline conditions.

作者信息

Dessì Paolo, Buenaño-Vargas Claribel, Martínez-Sosa Santiago, Mills Simon, Trego Anna, Ijaz Umer Z, Pant Deepak, Puig Sebastià, O'Flaherty Vincent, Farràs Pau

机构信息

School of Biological and Chemical Sciences and Energy Research Centre, Ryan Institute, University of Galway, University Road, H91 CF50, Galway, Ireland.

LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain.

出版信息

Environ Sci Ecotechnol. 2023 Mar 21;16:100261. doi: 10.1016/j.ese.2023.100261. eCollection 2023 Oct.

Abstract

The industrial adoption of microbial electrosynthesis (MES) is hindered by high overpotentials deriving from low electrolyte conductivity and inefficient cell designs. In this study, a mixed microbial consortium originating from an anaerobic digester operated under saline conditions (∼13 g L NaCl) was adapted for acetate production from bicarbonate in galvanostatic (0.25 mA cm) H-type cells at 5, 10, 15, or 20 g L NaCl concentration. The acetogenic communities were successfully enriched only at 5 and 10 g L NaCl, revealing an inhibitory threshold of about 6 g L Na. The enriched planktonic communities were then used as inoculum for 3D printed, three-chamber cells equipped with a gas diffusion biocathode. The cells were fed with CO gas and operated galvanostatically (0.25 or 1.00 mA cm). The highest production rate of 55.4 g m d (0.89 g L d), with 82.4% Coulombic efficiency, was obtained at 5 g L NaCl concentration and 1 mA cm applied current, achieving an average acetate production of 44.7 kg MWh. Scanning electron microscopy and 16S rRNA sequencing analysis confirmed the formation of a cathodic biofilm dominated by sp. Finally, three 3D printed cells were hydraulically connected in series to simulate an MES stack, achieving three-fold production rates than with the single cell at 0.25 mA cm. This confirms that three-chamber MES cells are an efficient and scalable technology for CO bio-electro recycling to acetate and that moderate saline conditions (5 g L NaCl) can help reduce their power demand while preserving the activity of acetogens.

摘要

微生物电合成(MES)在工业应用中受到阻碍,原因是低电解质电导率和低效的电池设计导致高过电位。在本研究中,将源自于在盐水条件(约13 g/L NaCl)下运行的厌氧消化器的混合微生物群落,在恒电流(0.25 mA/cm²)的H型电池中,于5、10、15或20 g/L NaCl浓度下,适应从碳酸氢盐生产乙酸盐。仅在5和10 g/L NaCl时成功富集了产乙酸群落,揭示了约6 g/L Na的抑制阈值。然后将富集的浮游生物群落用作接种物,接种到配备气体扩散生物阴极的3D打印三室电池中。向电池通入CO₂气体并恒电流运行(0.25或1.00 mA/cm²)。在5 g/L NaCl浓度和1 mA/cm²施加电流下,获得了最高产率55.4 g/m²·d(0.89 g/L·d),库仑效率为82.4%,实现了平均乙酸盐产量44.7 kg/MWh。扫描电子显微镜和16S rRNA测序分析证实形成了以某菌属为主的阴极生物膜。最后,将三个3D打印电池串联进行水力连接以模拟MES电池组,在0.25 mA/cm²时实现了比单电池高三倍的产率。这证实了三室MES电池是将CO₂生物电循环转化为乙酸盐的高效且可扩展的技术,并且适度的盐水条件(5 g/L NaCl)有助于降低其电力需求,同时保持产乙酸菌的活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfeb/10120373/011231f80799/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验