Suppr超能文献

界面工程助力石榴石型固态电池实现低至0.78μm的超薄锂金属电极。

Interface engineering enabling thin lithium metal electrodes down to 0.78 μm for garnet-type solid-state batteries.

作者信息

Ji Weijie, Luo Bi, Wang Qi, Yu Guihui, Zhang Zixun, Tian Yi, Zhao Zaowen, Zhao Ruirui, Wang Shubin, Wang Xiaowei, Zhang Bao, Zhang Jiafeng, Sang Zhiyuan, Liang Ji

机构信息

National Engineering Laboratory for High-Efficiency Recovery of Refractory Nonferrous Metals, School of Metallurgy and Environment, Central South University, Changsha, China.

Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou, China.

出版信息

Nat Commun. 2024 Nov 15;15(1):9920. doi: 10.1038/s41467-024-54234-w.

Abstract

Controllable engineering of thin lithium (Li) metal is essential for increasing the energy density of solid-state batteries and clarifying the interfacial evolution mechanisms of a lithium metal negative electrode. However, fabricating a thin lithium electrode faces significant challenges due to the fragility and high viscosity of Li metal. Herein, through facile treatment of Ta-doped LiLaZrO (LLZTO) with trifluoromethanesulfonic acid, its surface LiCO species is converted into a lithiophilic layer with LiCFSO and LiF components. It enables the thickness control of Li metal negative electrodes, ranging from 0.78 μm to 30 μm. Quasi-solid-state lithium-metal battery with an optimized 7.54 μm-thick lithium metal negative electrode, a commercial LiNiCoMnO positive electrode, and a negative/positive electrode capacity ratio of 1.1 shows a 500 cycles lifespan with a final discharge specific capacity of 99 mAh g at 2.35 mA cm and 25 °C. Through multi-scale characterizations of the thin lithium negative electrode, we clarify the multi-dimensional compositional evolution and failure mechanisms of lithium-deficient and -rich regions (0.78 μm and 7.54 μm), on its surface, inside it, or at the Li/LLZTO interface.

摘要

可控的薄锂金属工程对于提高固态电池的能量密度以及阐明锂金属负极的界面演化机制至关重要。然而,由于锂金属的脆性和高粘度,制造薄锂电极面临重大挑战。在此,通过用三氟甲磺酸对钽掺杂的LiLaZrO(LLZTO)进行简便处理,其表面的LiCO物种转化为具有LiCFSO和LiF成分的亲锂层。这使得锂金属负极的厚度能够得到控制,范围从0.78μm到30μm。具有优化的7.54μm厚锂金属负极、商用LiNiCoMnO正极以及负/正极容量比为1.1的准固态锂金属电池在2.35mA cm和25°C下显示出500次循环寿命,最终放电比容量为99 mAh g。通过对薄锂负极的多尺度表征,我们阐明了锂缺乏和富锂区域(0.78μm和7.54μm)在其表面、内部或Li/LLZTO界面处的多维成分演化和失效机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b6/11568204/08796d72d910/41467_2024_54234_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验