Liu Siyan, Barati Reza, Zhang Chi, Kazemi Mohammad
Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States.
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
ACS Omega. 2023 Apr 3;8(15):13649-13669. doi: 10.1021/acsomega.2c07643. eCollection 2023 Apr 18.
In this paper, we propose a modeling framework for pore-scale fluid flow and reactive transport based on a coupled lattice Boltzmann model (LBM). We develop a modeling interface to integrate the LBM modeling code parallel lattice Boltzmann solver and the PHREEQC reaction solver using multiple flow and reaction cell mapping schemes. The major advantage of the proposed workflow is the high modeling flexibility obtained by coupling the geochemical model with the LBM fluid flow model. Consequently, the model is capable of executing one or more complex reactions within desired cells while preserving the high data communication efficiency between the two codes. Meanwhile, the developed mapping mechanism enables the flow, diffusion, and reactions in complex pore-scale geometries. We validate the coupled code in a series of benchmark numerical experiments, including 2D single-phase Poiseuille flow and diffusion, 2D reactive transport with calcite dissolution, as well as surface complexation reactions. The simulation results show good agreement with analytical solutions, experimental data, and multiple other simulation codes. In addition, we design an AI-based optimization workflow and implement it on the surface complexation model to enable increased capacity of the coupled modeling framework. Compared to the manual tuning results proposed in the literature, our workflow demonstrates fast and reliable model optimization results without incorporating pre-existing domain knowledge.
在本文中,我们基于耦合格子玻尔兹曼模型(LBM)提出了一种孔隙尺度流体流动和反应输运的建模框架。我们开发了一个建模接口,使用多种流动和反应单元映射方案,将LBM建模代码并行格子玻尔兹曼求解器与PHREEQC反应求解器集成在一起。所提出工作流程的主要优点是通过将地球化学模型与LBM流体流动模型耦合获得了高建模灵活性。因此,该模型能够在所需单元内执行一个或多个复杂反应,同时保持两个代码之间的高数据通信效率。同时,所开发的映射机制能够处理复杂孔隙尺度几何结构中的流动、扩散和反应。我们在一系列基准数值实验中验证了耦合代码,包括二维单相泊肃叶流动和扩散、方解石溶解的二维反应输运以及表面络合反应。模拟结果与解析解、实验数据以及其他多个模拟代码显示出良好的一致性。此外,我们设计了一种基于人工智能的优化工作流程,并将其应用于表面络合模型,以提高耦合建模框架的能力。与文献中提出的手动调整结果相比,我们的工作流程在不纳入预先存在的领域知识的情况下,展示了快速且可靠的模型优化结果。