Kotsalos Christos, Latt Jonas, Beny Joel, Chopard Bastien
Computer Science Department, University of Geneva, 7 route de Drize, 1227 Carouge, Switzerland.
Interface Focus. 2021 Feb 6;11(1):20190116. doi: 10.1098/rsfs.2019.0116. Epub 2020 Dec 11.
We propose a highly versatile computational framework for the simulation of cellular blood flow focusing on extreme performance without compromising accuracy or complexity. The tool couples the lattice Boltzmann solver Palabos for the simulation of blood plasma, a novel finite-element method (FEM) solver for the resolution of deformable blood cells, and an immersed boundary method for the coupling of the two phases. The design of the tool supports hybrid CPU-GPU executions (fluid, fluid-solid interaction on CPUs, deformable bodies on GPUs), and is non-intrusive, as each of the three components can be replaced in a modular way. The FEM-based kernel for solid dynamics outperforms other FEM solvers and its performance is comparable to state-of-the-art mass-spring systems. We perform an exhaustive performance analysis on Piz Daint at the Swiss National Supercomputing Centre and provide case studies focused on platelet transport, implicitly validating the accuracy of our tool. The tests show that this versatile framework combines unprecedented accuracy with massive performance, rendering it suitable for upcoming exascale architectures.
我们提出了一个高度通用的计算框架,用于模拟细胞血流,该框架专注于极致性能,同时不影响准确性或复杂性。该工具将用于模拟血浆的格子玻尔兹曼求解器Palabos、用于求解可变形血细胞的新型有限元方法(FEM)求解器以及用于两相耦合的浸入边界方法相结合。该工具的设计支持混合CPU-GPU执行(流体、CPU上的流固相互作用、GPU上的可变形体),并且是非侵入性的,因为三个组件中的每一个都可以以模块化方式替换。基于有限元的固体动力学内核优于其他有限元求解器,其性能与最先进的质量弹簧系统相当。我们在瑞士国家超级计算中心的Piz Daint上进行了详尽的性能分析,并提供了专注于血小板运输的案例研究,从而隐含地验证了我们工具的准确性。测试表明,这个通用框架将前所未有的准确性与巨大的性能相结合,使其适用于即将到来的百亿亿次架构。