Department of Chemistry, University of California, Davis, California 95616, USA.
National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
J Chem Phys. 2023 Apr 28;158(16). doi: 10.1063/5.0144742.
Crystallization of amorphous materials by thermal annealing has been investigated for numerous applications in the fields of nanotechnology, such as thin-film transistors and thermoelectric devices. The phase transition and shape evolution of amorphous germanium (Ge) and Ag@Ge core-shell nanoparticles with average diameters of 10 and 12 nm, respectively, were investigated by high-energy electron beam irradiation and in situ heating within a transmission electron microscope. The transition of a single Ge amorphous nanoparticle to the crystalline diamond cubic structure at the atomic scale was clearly demonstrated. Depending on the heating temperature, a hollow Ge structure can be maintained or transformed into a solid Ge nanocrystal through a diffusive process during the amorphous to crystalline phase transition. Selected area diffraction patterns were obtained to confirm the crystallization process. In addition, the thermal stability of Ag@Ge core-shell nanoparticles with an average core of 7.4 and a 2.1 nm Ge shell was studied by applying the same beam conditions and temperatures. The results show that at a moderate temperature (e.g., 385 °C), the amorphous Ge shell can completely crystallize while maintaining the well-defined core-shell structure, while at a high temperature (e.g., 545 °C), the high thermal energy enables a freely diffusive process of both Ag and Ge atoms on the carbon support film and leads to transformation into a phase segregated Ag-Ge Janus nanoparticle with a clear interface between the Ag and Ge domains. This study provides a protocol as well as insight into the thermal stability and strain relief mechanism of complex nanostructures at the single nanoparticle level with atomic resolution.
通过热退火使非晶态材料结晶的方法已经在纳米技术领域的许多应用中得到了研究,例如薄膜晶体管和热电设备。本研究通过高能电子束辐照和在透射电子显微镜内原位加热,研究了平均直径分别为 10nm 和 12nm 的非晶态锗(Ge)和 Ag@Ge 核壳纳米粒子的相转变和形状演变。在原子尺度上,单个 Ge 非晶纳米颗粒向金刚石立方结构的转变得到了清晰的证明。根据加热温度的不同,通过非晶相向晶相转变过程中的扩散过程,可以保持空心 Ge 结构或将其转化为固体 Ge 纳米晶体。通过选区衍射图案获得了结晶过程的确认。此外,通过施加相同的电子束条件和温度,研究了具有平均核为 7.4nm 和 2.1nm Ge 壳的 Ag@Ge 核壳纳米粒子的热稳定性。结果表明,在中等温度(例如 385°C)下,非晶态 Ge 壳可以完全结晶,同时保持良好定义的核壳结构,而在高温(例如 545°C)下,高热能使 Ag 和 Ge 原子在碳支撑膜上自由扩散,导致形成具有 Ag 和 Ge 域之间清晰界面的相分离 Ag-Ge 双金属纳米粒子。本研究提供了一种方案,以及对单颗粒水平下复杂纳米结构的热稳定性和应变释放机制的深入了解,具有原子分辨率。