Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
Phytomedicine. 2023 Jul;115:154791. doi: 10.1016/j.phymed.2023.154791. Epub 2023 Mar 31.
α-Mangostin is a xanthone isolated from the pericarps of mangosteen fruit with, and has analgesic properties. Although the effects suggest an interaction of α-mangostin with ion channels in the nociceptive neurons, electrophysiological investigation of the underlying mechanism has not been performed.
We hypothesized that α-Mangostin exerts its analgesic effects by modulating the activity of various ion channels in dorsal root ganglion (DRG) neurons.
We performed a whole-cell patch clamp study using mouse DRG neurons, HEK293T cells overexpressing targeted ion channels, and ND7/23 cells. Molecular docking (MD) and in silico absorption, distribution, metabolism, and excretion (ADME) analyses were conducted to obtain further insights into the binding sites and pharmacokinetics, respectively.
Application of α-mangostin (1-3 µM) hyperpolarized the resting membrane potential (RMP) of small-sized DRG neurons by increasing background K conductance and thereby inhibited action potential generation. At micromolar levels, α-mangostin activates TREK-1, TREK-2, or TRAAK, members of the two-pore domain K channel (K2P) family known to be involved in RMP formation in DRG neurons. Furthermore, capsaicin-induced TRPV1 currents were potently inhibited by α-mangostin (0.43 ± 0.27 µM), and partly suppressed tetrodotoxin-sensitive voltage-gated Na channel (Na) currents. MD simulation revealed that multiple oxygen atoms in α-mangostin may form stable hydrogen bonds with TREKs, TRAAK, TRPV1, and Na channels. In silico ADME tests suggested that α-mangostin may satisfy the drug-likeness properties without penetrating the blood-brain barrier.
The analgesic properties of α-mangostin might be mediated by the multi-target modulation of ion channels, including TREK/TRAAK activation, TRPV1 inhibition, and reduction of the tetrodotoxin-sensitive Na current. The findings suggest that the phytochemical can be a multi-ion channel-targeting drug and an alternative drug for effective pain management.
α-倒捻子素是从山竹果皮中分离出来的一种黄烷酮,具有镇痛作用。虽然这些作用表明 α-倒捻子素与伤害感受神经元中的离子通道相互作用,但尚未进行潜在机制的电生理研究。
我们假设 α-倒捻子素通过调节背根神经节 (DRG) 神经元中各种离子通道的活性发挥其镇痛作用。
我们使用小鼠 DRG 神经元、过表达靶向离子通道的 HEK293T 细胞和 ND7/23 细胞进行全细胞膜片钳研究。进行分子对接 (MD) 和计算机吸收、分布、代谢和排泄 (ADME) 分析,以分别获得结合部位和药代动力学的进一步见解。
应用 α-倒捻子素 (1-3 μM) 通过增加背景 K 电导使小 DRG 神经元的静息膜电位 (RMP) 超极化,从而抑制动作电位产生。在微摩尔水平上,α-倒捻子素激活 TREK-1、TREK-2 或 TRAAK,它们是双孔域 K 通道 (K2P) 家族的成员,已知参与 DRG 神经元中 RMP 的形成。此外,α-倒捻子素强烈抑制辣椒素诱导的 TRPV1 电流 (0.43±0.27 μM),并部分抑制河豚毒素敏感电压门控 Na 通道 (Na) 电流。MD 模拟表明,α-倒捻子素中的多个氧原子可能与 TREKs、TRAAK、TRPV1 和 Na 通道形成稳定的氢键。计算机 ADME 测试表明,α-倒捻子素可能具有药物样特性而不会穿透血脑屏障。
α-倒捻子素的镇痛特性可能通过对包括 TREK/TRAAK 激活、TRPV1 抑制和减少河豚毒素敏感的 Na 电流在内的多种离子通道的多靶点调节来介导。这些发现表明,这种植物化学物质可以成为一种多离子通道靶向药物,是有效疼痛管理的替代药物。