College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; College of Science, Henan Agricultural University, Zhengzhou 450002, China.
J Colloid Interface Sci. 2023 Aug 15;644:42-52. doi: 10.1016/j.jcis.2023.04.063. Epub 2023 Apr 21.
The sluggish redox kinetics and the severe shuttle effect of soluble lithium polysulfides (LiPSs) are the main key issues which would hinder the development of lithium-sulfur (Li-S) batteries. In this work, a nickel-doped vanadium selenide in-situ grows on reduced graphene oxide(rGO) to form a two-dimensional (2D) composite Ni-VSe/rGO by a simple solvothermal method. When it is used as a modified separator in Li-S batteries, the Ni-VSe/rGO material with the doped defect and super-thin layered structure can greatly adsorb LiPSs and catalyze the conversion reaction of LiPSs, resulting in effectively reducing LiPSs diffusion and suppressing the shuttle effect. More importantly, the cathode-separator bonding body is first developed as a new strategy of electrode-separator integration in Li-S batteries, which not only could decrease the LiPSs dissolution and improve the catalysis performance of the functional separator as the upper current-collector, but also is good for the high sulfur loading and the low electrolyte/sulfur (E/S) ratio for high energy density Li-S batteries. When the Ni-VSe/rGO-PP (polypropylene, Celgard 2400) modified separator is applied, the Li-S cell can retain 510.3 mA h g capacity after 1190 cycles at 0.5C. In the electrode-separator integrated system, the Li-S cell can still maintain 552.9 mA h g for 190 cycles at a sulfur loading 6.4 mg cm and 4.9 mA h cm for 100 cycles at a sulfur loading 7.0 mg cm. The experimental results indicate that both the doped defect engineering and the super-thin layered structure design might optimally be chosen to fabricate a new modified separator material, and especially, the electrode-separator integration strategy would open a practical way to promote the electrochemical behavior of Li-S batteries with high sulfur loading and low E/S ratio.
可溶性锂多硫化物(LiPSs)的缓慢氧化还原动力学和严重的穿梭效应是阻碍锂硫(Li-S)电池发展的主要关键问题。在这项工作中,通过简单的溶剂热法,在还原氧化石墨烯(rGO)上原位生长了一种镍掺杂的硒化钒,形成了二维(2D)复合 Ni-VSe/rGO。当它被用作 Li-S 电池的改性分离器时,具有掺杂缺陷和超薄层状结构的 Ni-VSe/rGO 材料可以极大地吸附 LiPSs 并催化 LiPSs 的转化反应,从而有效降低 LiPSs 的扩散并抑制穿梭效应。更重要的是,首次开发了阴极-分离器结合体作为 Li-S 电池中电极-分离器集成的新策略,不仅可以减少 LiPSs 的溶解并提高功能性分离器作为上集流器的催化性能,而且有利于高硫负载和低电解质/硫(E/S)比,以实现高能量密度 Li-S 电池。当应用 Ni-VSe/rGO-PP(聚丙烯,Celgard 2400)改性分离器时,Li-S 电池在 0.5C 下经过 1190 次循环后可保持 510.3 mA h g 的容量。在电极-分离器集成系统中,Li-S 电池在硫负载为 6.4 mg cm 时仍可保持 552.9 mA h g 的容量,在硫负载为 7.0 mg cm 时仍可保持 4.9 mA h cm 的容量进行 100 次循环。实验结果表明,掺杂缺陷工程和超薄层状结构设计都可以优化选择来制造新型改性分离器材料,特别是电极-分离器集成策略将为高硫负载和低 E/S 比的 Li-S 电池电化学性能的提升开辟一条实用途径。