Suppr超能文献

硒空位功能化双金属(Co、Fe)硒化物介体在高能量密度锂硫电池中的作用。

The role of selenium vacancies functionalized mediator of bimetal (Co, Fe) selenide for high-energy-density lithium-sulfur batteries.

机构信息

College of Science, Henan Agricultural University, Zhengzhou 450002, China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

College of Science, Henan Agricultural University, Zhengzhou 450002, China.

出版信息

J Colloid Interface Sci. 2023 May;637:161-172. doi: 10.1016/j.jcis.2023.01.090. Epub 2023 Jan 21.

Abstract

Lithium-sulfur (Li-S) batteries are currently only in the basic research stage and have not been commercialized, which is mainly affected by the poor conductivity of sulfur/lithium sulfide (S/LiS), volume expansion effect of sulfur and the shuttle effect of lithium polysulfides (LiPSs). Herein, a three dimensional (3D) carbon nanotubes (CNTs) decorated cubic CoSe/FeSe (0 < x < 8, 0 < y < 2) composite (CoSe/FeSe@CNTs) is developed, and used as the functionalized mediator on polypropylene (PP) in Li-S batteries. Benefiting from the good electrical conductivity, large number of Se vacancies and the triple block/adsorption/catalytic effects of CoSe/FeSe@CNTs, the cell with CoSe/FeSe@CNTs//PP modified separator delivers a high reversible capacity (1103.5 mA h g) at 1C after three cycles activation at 0.5C and remains 446 mA g h after 750 cycles with a 0.08% capacity decay rate each cycle. Moreover, at 0.2C, a high areal capacity of 3.63 mA h cm after 100 cycles with a high sulfur loading of 4.1 mg cm is obtained. The in-situ XRD tests revealing the transition path of α-S → LiS → β-S during the first charge-discharge process, then β-S → LiS → β-S conversion reaction in the next cycles, and firstly determine the sulfur-selenide active intermediates (SeS) during cycles. The work provides a new insight into the development of bimetallic selenide composites by defect engineering with highly adsorptive and catalytic properties for Li-S batteries.

摘要

锂硫(Li-S)电池目前仍处于基础研究阶段,尚未商业化,主要受硫/硫化锂(S/LiS)导电性差、硫的体积膨胀效应和多硫化锂(LiPSs)穿梭效应的影响。在此,开发了一种三维(3D)碳纳米管(CNTs)修饰的立方 CoSe/FeSe(0 < x < 8,0 < y < 2)复合材料(CoSe/FeSe@CNTs),并将其用作锂硫电池中聚丙烯(PP)的功能化介体。得益于良好的导电性、大量的 Se 空位以及 CoSe/FeSe@CNTs 的三重阻挡/吸附/催化作用,经过 0.5C 三个循环激活后,具有 CoSe/FeSe@CNTs//PP 改性分离器的电池在 1C 下可提供高可逆容量(1103.5 mA h g),经过 750 次循环后容量保持率为 446 mA h g,每个循环的容量衰减率为 0.08%。此外,在 0.2C 下,在 4.1mg cm 的高硫载量下可获得 3.63 mA h cm 的高面积容量,经过 100 次循环。原位 XRD 测试揭示了首次充放电过程中α-S→LiS→β-S的转变路径,随后在接下来的循环中β-S→LiS→β-S的转化反应,并且首先在循环过程中确定了硫硒化物活性中间体(SeS)。该工作通过缺陷工程为 Li-S 电池提供了一种具有高吸附和催化性能的双金属硒化物复合材料的新见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验