Suppr超能文献

基于 LiAlTi(PO) 的薄复合固体电解质,具有原位形成的聚(1,3-二氧戊环)增强界面,用于锂金属电池。

Thin LiAlTi(PO)-based composite solid electrolyte with a reinforced interface of in situ formed poly(1,3-dioxolane) for lithium metal batteries.

机构信息

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, China.

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, China.

出版信息

J Colloid Interface Sci. 2023 Aug 15;644:53-63. doi: 10.1016/j.jcis.2023.03.182. Epub 2023 Apr 5.

Abstract

Composite solid electrolytes (CSEs) exhibit great potential due to their advantages of both sufficient strength and high ionic conductivity. However, their interfacial impendence and thickness hinder potential applications. Herein, a thin CSE with good interface performance is designed through the combination of immersion precipitation and in situ polymerization. By employing a nonsolvent in immersion precipitation, a porous poly(vinylidene fluoride-cohexafluoropropylene) (PVDF-HFP) membrane could be rapidly created. The pores in the membrane could accommodate sufficient well-dispersed inorganic LiAlTi(PO) (LATP) particles. Subsequent in situ polymerized 1,3‑dioxolane (PDOL) further protects LATP from reacting with lithium metal and supplies superior interfacial performance. The CSE has a thickness of ∼ 60 μm, ionic conductivity of 1.57 × 10 S cm, and oxidation stability of 5.3 V. The Li/1.25LATP-CSE/Li symmetric cell has a long cycling performance of 780 h at 0.3 mA cm for 0.3 mAh cm. The Li/1.25LATP-CSE/LiFePO cell exhibits a discharge capacity of 144.6 mAh/g at 1C and a capacity retention of 97.72 % after 300 cycles. Continuous depletion of lithium salts due to the reconstruction of the solid electrolyte interface (SEI) may be responsible for battery failure. The combination of the fabrication method and failure mechanism gives new insight into designing CSEs.

摘要

复合固态电解质(CSE)兼具足够的机械强度和高离子电导率,具有很大的应用潜力。然而,其界面阻抗和厚度限制了其潜在应用。本文通过浸涂沉淀和原位聚合相结合的方法设计了一种具有良好界面性能的薄型 CSE。在浸涂沉淀中使用非溶剂,可快速制备出多孔聚偏氟乙烯-六氟丙烯(PVDF-HFP)膜。该膜中的孔可容纳足够的分散良好的无机 LiAlTi(PO)(LATP)颗粒。随后原位聚合的 1,3-二氧戊环(PDOL)进一步保护 LATP 与锂金属发生反应,并提供优异的界面性能。CSE 的厚度约为 60μm,离子电导率为 1.57×10 S cm,氧化稳定性为 5.3V。Li/1.25LATP-CSE/Li 对称电池在 0.3 mA cm 下以 0.3 mAh cm 循环 780 h 后仍具有长循环性能。Li/1.25LATP-CSE/LiFePO 电池在 1C 下的放电容量为 144.6 mAh/g,经过 300 次循环后容量保持率为 97.72%。由于固态电解质界面(SEI)的重构,可能导致锂盐不断消耗,从而导致电池失效。该制备方法和失效机制的结合为设计 CSE 提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验