Song Zhengpeng, Li Haotong, Zheng Fei, Lin Husitu, Liu Jing, Liu Wei, Sun Guohua, Tao Xia
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China.
ACS Appl Mater Interfaces. 2023 Jul 26;15(29):35280-35289. doi: 10.1021/acsami.3c06511. Epub 2023 Jul 11.
Ceramic LiAlTi(PO) (LATP) with high ionic conductivity and stability in ambient atmosphere is considered to be potent as a solid-state electrolyte of solid-state lithium metal batteries (SSLMBs), but its huge interfacial impedance with electrodes and the unwanted Ti-mediated reduction reaction caused by the lithium (Li) metal anode greatly limit its application in LMBs. Herein, a composite polymer electrolyte (CPET) was integrated by in situ gelation of dual-permeable 1, 3-dioxolane (DOL) in the tandem framework composed of the commercial cellulose membrane TF4030 and a porous three-dimensional (3D) skeleton-structured LATP. The in situ gelled DOL anchored in the tandem framework ensured nice interfacial contact between the as-prepared CPET and electrodes. The introduction of the porous 3D LATP endowed CPET the increased lithium-ion migration number (t) of 0.70, a wide electrochemical stability window (ESW) of 4.86 V, and a high ionic conductivity of 1.16 × 10 S cm at room temperature (RT). Meanwhile, the side reaction of the LATP/Li metal was adequately restrained by inserting TF4030 between the porous LATP and Li anode. Profiting from the superb interfacial stability and the enhanced ionic transport capacity of CPET, Li/Li batteries based on the optimal CPET (CPET2) cycled over 2000 h at 20∼30 °C smoothly. Moreover, solid-state LiFePO (LFP)/Li with CPET2 exhibited excellent electrochemical performance with a capacity retention ratio of 72.2% after 400 cycles at 0.5C. This work offers an integrated strategy to guide the fabrication of a highly conductive solid electrolyte and a stable interface design for high-performance SSLMBs.
具有高离子电导率且在环境大气中稳定的陶瓷LiAlTi(PO)(LATP)被认为是固态锂金属电池(SSLMBs)的固态电解质的有力候选材料,但其与电极的巨大界面阻抗以及锂(Li)金属阳极引起的不必要的Ti介导的还原反应极大地限制了其在LMBs中的应用。在此,通过在由商用纤维素膜TF4030和多孔三维(3D)骨架结构的LATP组成的串联框架中原位凝胶化双渗透的1,3 - 二氧戊环(DOL),制备了一种复合聚合物电解质(CPET)。原位凝胶化的DOL锚定在串联框架中确保了所制备的CPET与电极之间良好的界面接触。多孔3D LATP的引入使CPET的锂离子迁移数(t)增加到0.70,具有4.86 V的宽电化学稳定窗口(ESW),并且在室温(RT)下具有1.16×10 S cm的高离子电导率。同时,通过在多孔LATP和Li阳极之间插入TF4030,充分抑制了LATP/Li金属的副反应。受益于CPET优异的界面稳定性和增强的离子传输能力,基于最佳CPET(CPET2)的Li/Li电池在20∼30°C下可平稳循环超过2000小时。此外,使用CPET2的固态LiFePO(LFP)/Li在0.5C下循环400次后表现出优异的电化学性能,容量保持率为72.2%。这项工作提供了一种综合策略,以指导高导电性固体电解质的制备和高性能SSLMBs的稳定界面设计。