Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY, 14260, USA.
School of Psychology, Georgia Institute of Technology, Atlanta, GA, 14260, USA.
Sci Rep. 2023 Apr 24;13(1):6699. doi: 10.1038/s41598-023-33441-3.
Network neuroscience provides important insights into brain function by analyzing complex networks constructed from diffusion Magnetic Resonance Imaging (dMRI), functional MRI (fMRI) and Electro/Magnetoencephalography (E/MEG) data. However, in order to ensure that results are reproducible, we need a better understanding of within- and between-subject variability over long periods of time. Here, we analyze a longitudinal, 8 session, multi-modal (dMRI, and simultaneous EEG-fMRI), and multiple task imaging data set. We first confirm that across all modalities, within-subject reproducibility is higher than between-subject reproducibility. We see high variability in the reproducibility of individual connections, but observe that in EEG-derived networks, during both rest and task, alpha-band connectivity is consistently more reproducible than connectivity in other frequency bands. Structural networks show a higher reliability than functional networks across network statistics, but synchronizability and eigenvector centrality are consistently less reliable than other network measures across all modalities. Finally, we find that structural dMRI networks outperform functional networks in their ability to identify individuals using a fingerprinting analysis. Our results highlight that functional networks likely reflect state-dependent variability not present in structural networks, and that the type of analysis should depend on whether or not one wants to take into account state-dependent fluctuations in connectivity.
网络神经科学通过分析从扩散磁共振成像(dMRI)、功能磁共振成像(fMRI)和脑电/磁图(E/MEG)数据构建的复杂网络,为大脑功能提供了重要的见解。然而,为了确保结果具有可重复性,我们需要更好地了解长时间内的个体内和个体间的可变性。在这里,我们分析了一个纵向的、8 个阶段的、多模态(dMRI 和同时的 EEG-fMRI)以及多个任务成像数据集。我们首先确认,在所有模态中,个体内的可重复性均高于个体间的可重复性。我们观察到单个连接的可重复性具有很高的变异性,但在 EEG 衍生的网络中,无论是在休息还是在任务期间,alpha 波段的连接性都比其他频段的连接性具有更高的可重复性。结构网络在网络统计方面的可靠性高于功能网络,但同步能力和特征向量中心性在所有模态中的可靠性均低于其他网络指标。最后,我们发现结构 dMRI 网络在使用指纹分析识别个体方面的能力优于功能网络。我们的研究结果表明,功能网络可能反映了结构网络中不存在的状态依赖性变异性,并且分析的类型应该取决于是否要考虑到连接的状态依赖性波动。