Suppr超能文献

多模态纵向脑网络的组内可重复性存在差异。

Within-subject reproducibility varies in multi-modal, longitudinal brain networks.

机构信息

Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY, 14260, USA.

School of Psychology, Georgia Institute of Technology, Atlanta, GA, 14260, USA.

出版信息

Sci Rep. 2023 Apr 24;13(1):6699. doi: 10.1038/s41598-023-33441-3.

Abstract

Network neuroscience provides important insights into brain function by analyzing complex networks constructed from diffusion Magnetic Resonance Imaging (dMRI), functional MRI (fMRI) and Electro/Magnetoencephalography (E/MEG) data. However, in order to ensure that results are reproducible, we need a better understanding of within- and between-subject variability over long periods of time. Here, we analyze a longitudinal, 8 session, multi-modal (dMRI, and simultaneous EEG-fMRI), and multiple task imaging data set. We first confirm that across all modalities, within-subject reproducibility is higher than between-subject reproducibility. We see high variability in the reproducibility of individual connections, but observe that in EEG-derived networks, during both rest and task, alpha-band connectivity is consistently more reproducible than connectivity in other frequency bands. Structural networks show a higher reliability than functional networks across network statistics, but synchronizability and eigenvector centrality are consistently less reliable than other network measures across all modalities. Finally, we find that structural dMRI networks outperform functional networks in their ability to identify individuals using a fingerprinting analysis. Our results highlight that functional networks likely reflect state-dependent variability not present in structural networks, and that the type of analysis should depend on whether or not one wants to take into account state-dependent fluctuations in connectivity.

摘要

网络神经科学通过分析从扩散磁共振成像(dMRI)、功能磁共振成像(fMRI)和脑电/磁图(E/MEG)数据构建的复杂网络,为大脑功能提供了重要的见解。然而,为了确保结果具有可重复性,我们需要更好地了解长时间内的个体内和个体间的可变性。在这里,我们分析了一个纵向的、8 个阶段的、多模态(dMRI 和同时的 EEG-fMRI)以及多个任务成像数据集。我们首先确认,在所有模态中,个体内的可重复性均高于个体间的可重复性。我们观察到单个连接的可重复性具有很高的变异性,但在 EEG 衍生的网络中,无论是在休息还是在任务期间,alpha 波段的连接性都比其他频段的连接性具有更高的可重复性。结构网络在网络统计方面的可靠性高于功能网络,但同步能力和特征向量中心性在所有模态中的可靠性均低于其他网络指标。最后,我们发现结构 dMRI 网络在使用指纹分析识别个体方面的能力优于功能网络。我们的研究结果表明,功能网络可能反映了结构网络中不存在的状态依赖性变异性,并且分析的类型应该取决于是否要考虑到连接的状态依赖性波动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c45/10126005/9ff2ece24820/41598_2023_33441_Fig1_HTML.jpg

相似文献

1
Within-subject reproducibility varies in multi-modal, longitudinal brain networks.
Sci Rep. 2023 Apr 24;13(1):6699. doi: 10.1038/s41598-023-33441-3.
3
Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations.
Neuroimage. 2021 Oct 15;240:118331. doi: 10.1016/j.neuroimage.2021.118331. Epub 2021 Jul 5.
4
Reliability of Magnetoencephalography and High-Density Electroencephalography Resting-State Functional Connectivity Metrics.
Brain Connect. 2019 Sep;9(7):539-553. doi: 10.1089/brain.2019.0662. Epub 2019 Jun 26.
5
A Mapping Between Structural and Functional Brain Networks.
Brain Connect. 2016 May;6(4):298-311. doi: 10.1089/brain.2015.0408. Epub 2016 Mar 29.
7
Group differences in MEG-ICA derived resting state networks: Application to major depressive disorder.
Neuroimage. 2015 Sep;118:1-12. doi: 10.1016/j.neuroimage.2015.05.051. Epub 2015 May 30.
8
NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
Neuroimage. 2020 Oct 1;219:117020. doi: 10.1016/j.neuroimage.2020.117020. Epub 2020 Jun 6.
9
Examining resting-state functional connectivity in first-episode schizophrenia with 7T fMRI and MEG.
Neuroimage Clin. 2019;24:101959. doi: 10.1016/j.nicl.2019.101959. Epub 2019 Jul 23.

引用本文的文献

1
SNAKE: A modular realistic fMRI data simulator from the space-time domain to k-space and back.
Imaging Neurosci (Camb). 2025 Sep 2;3. doi: 10.1162/IMAG.a.121. eCollection 2025.
3
Simulated brain networks reflecting progression of Parkinson's disease.
Netw Neurosci. 2024 Dec 10;8(4):1400-1420. doi: 10.1162/netn_a_00406. eCollection 2024.
5
6
Quantifying the contribution of subject and group factors in brain activation.
Cereb Cortex. 2023 Nov 4;33(22):11092-11101. doi: 10.1093/cercor/bhad348.
8
Establishing the Validity of Compressed Sensing Diffusion Spectrum Imaging.
bioRxiv. 2023 Feb 23:2023.02.22.529546. doi: 10.1101/2023.02.22.529546.

本文引用的文献

1
Accuracy and reliability of diffusion imaging models.
Neuroimage. 2022 Jul 1;254:119138. doi: 10.1016/j.neuroimage.2022.119138. Epub 2022 Mar 23.
2
Evidence for exercise-related plasticity in functional and structural neural network connectivity.
Neurosci Biobehav Rev. 2021 Dec;131:923-940. doi: 10.1016/j.neubiorev.2021.10.013. Epub 2021 Oct 13.
3
The relationship between EEG and fMRI connectomes is reproducible across simultaneous EEG-fMRI studies from 1.5T to 7T.
Neuroimage. 2021 May 1;231:117864. doi: 10.1016/j.neuroimage.2021.117864. Epub 2021 Feb 13.
4
Network variants are similar between task and rest states.
Neuroimage. 2021 Apr 1;229:117743. doi: 10.1016/j.neuroimage.2021.117743. Epub 2021 Jan 14.
5
Immediate brain plasticity after one hour of brain-computer interface (BCI).
J Physiol. 2021 May;599(9):2435-2451. doi: 10.1113/JP278118. Epub 2019 Nov 6.
6
Trait-like variants in human functional brain networks.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22851-22861. doi: 10.1073/pnas.1902932116. Epub 2019 Oct 14.
7
A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis.
Neuroimage. 2019 Dec;203:116157. doi: 10.1016/j.neuroimage.2019.116157. Epub 2019 Sep 5.
8
Distinctions among real and apparent respiratory motions in human fMRI data.
Neuroimage. 2019 Nov 1;201:116041. doi: 10.1016/j.neuroimage.2019.116041. Epub 2019 Jul 22.
9
Combining multiple connectomes improves predictive modeling of phenotypic measures.
Neuroimage. 2019 Nov 1;201:116038. doi: 10.1016/j.neuroimage.2019.116038. Epub 2019 Jul 20.
10
Evaluation of Artifact Subspace Reconstruction for Automatic Artifact Components Removal in Multi-Channel EEG Recordings.
IEEE Trans Biomed Eng. 2020 Apr;67(4):1114-1121. doi: 10.1109/TBME.2019.2930186. Epub 2019 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验