Suppr超能文献

弥散成像模型的准确性和可靠性。

Accuracy and reliability of diffusion imaging models.

机构信息

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America.

Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America.

出版信息

Neuroimage. 2022 Jul 1;254:119138. doi: 10.1016/j.neuroimage.2022.119138. Epub 2022 Mar 23.

Abstract

Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain's white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individual). Diffusion imaging methods that allow for crossing fibers (FSL's BedpostX [BPX], DSI Studio's Constant Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3's Constrained Spherical Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or when the data did not match the model priors. To reduce such overfitting, we developed a novel Bayesian Multi-tensor Model-selection (BaMM) method and applied it to the popular ball-and-stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting and showed high reliability and the relatively best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance precision diffusion imaging. For potential clinical applications of diffusion imaging, such as neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to achieve diffusion imaging reliability are lower than those needed for functional MRI.

摘要

扩散成像旨在无创地描述大脑白质纤维的解剖结构和完整性。我们评估了常用的扩散成像方法的准确性和可靠性,这些方法的功能与数据量和分析方法有关,使用了模拟数据和高度采样的个体特异性数据(每个个体有 927-1442 张弥散加权图像[DWIs])。允许交叉纤维的扩散成像方法(FSL 的 BedpostX [BPX]、DSI Studio 的恒定立体角 Q-Ball 成像[CSA-QBI]、MRtrix3 的约束球谐分解[CSD])在数据不足和/或数据不符合模型先验时估计多余纤维。为了减少这种过度拟合,我们开发了一种新的贝叶斯多张量模型选择(BaMM)方法,并将其应用于 FSL 软件包中 BedpostX 中使用的流行的球棒模型。BaMM 对过度拟合具有鲁棒性,并且随着扩散数据量的增加,具有较高的可靠性和相对最佳的交叉纤维准确性。因此,充足的数据和抗过度拟合的分析方法可以提高扩散成像的精度。对于扩散成像的潜在临床应用,如神经外科规划和深部脑刺激(DBS),实现扩散成像可靠性所需的数据量低于功能磁共振成像所需的数据量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a8/9841915/c21f8c0f9fef/nihms-1840704-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验