反映帕金森病进展的模拟脑网络。
Simulated brain networks reflecting progression of Parkinson's disease.
作者信息
Jung Kyesam, Eickhoff Simon B, Caspers Julian, Popovych Oleksandr V
机构信息
Institute of Neurosciences and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany.
Institute for Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
出版信息
Netw Neurosci. 2024 Dec 10;8(4):1400-1420. doi: 10.1162/netn_a_00406. eCollection 2024.
The neurodegenerative progression of Parkinson's disease affects brain structure and function and, concomitantly, alters the topological properties of brain networks. The network alteration accompanied by motor impairment and the duration of the disease has not yet been clearly demonstrated in the disease progression. In this study, we aim to resolve this problem with a modeling approach using the reduced Jansen-Rit model applied to large-scale brain networks derived from cross-sectional MRI data. Optimizing whole-brain simulation models allows us to discover brain networks showing unexplored relationships with clinical variables. We observe that the simulated brain networks exhibit significant differences between healthy controls ( = 51) and patients with Parkinson's disease ( = 60) and strongly correlate with disease severity and disease duration of the patients. Moreover, the modeling results outperform the empirical brain networks in these clinical measures. Consequently, this study demonstrates that utilizing the simulated brain networks provides an enhanced view of network alterations in the progression of motor impairment and identifies potential biomarkers for clinical indices.
帕金森病的神经退行性进展会影响脑结构和功能,同时改变脑网络的拓扑特性。在疾病进展过程中,伴随运动障碍和疾病持续时间的网络改变尚未得到明确证实。在本研究中,我们旨在通过一种建模方法解决这一问题,该方法使用简化的扬森-里特模型应用于从横断面MRI数据得出的大规模脑网络。优化全脑模拟模型使我们能够发现与临床变量呈现未探索关系的脑网络。我们观察到,模拟脑网络在健康对照者(n = 51)和帕金森病患者(n = 60)之间表现出显著差异,并且与患者的疾病严重程度和疾病持续时间密切相关。此外,在这些临床指标方面,建模结果优于经验性脑网络。因此,本研究表明,利用模拟脑网络能够更深入地了解运动障碍进展过程中的网络改变,并识别临床指标的潜在生物标志物。