Suppr超能文献

超快激光喉显微手术在犬声带黏膜下空泡形成中的应用。

Ultrafast Laser Microlaryngeal Surgery for In Vivo Subepithelial Void Creation in Canine Vocal Folds.

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, U.S.A.

Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, U.S.A.

出版信息

Laryngoscope. 2023 Nov;133(11):3042-3048. doi: 10.1002/lary.30713. Epub 2023 Apr 25.

Abstract

BACKGROUND/OBJECTIVES: Tightly-focused ultrafast laser pulses (pulse widths of 100 fs-10 ps) provide high peak intensities to produce a spatially confined tissue ablation effect. The creation of sub-epithelial voids within scarred vocal folds (VFs) via ultrafast laser ablation may help to localize injectable biomaterials to treat VF scarring. Here, we demonstrate the feasibility of this technique in an animal model using a custom-designed endolaryngeal laser surgery probe.

METHODS

Unilateral VF mucosal injuries were created in two canines. Four months later, ultrashort laser pulses (5 ps pulses at 500 kHz) were delivered via the custom laser probe to create sub-epithelial voids of ~3 × 3-mm in both healthy and scarred VFs. PEG-rhodamine was injected into these voids. Ex vivo optical imaging and histology were used to assess void morphology and biomaterial localization.

RESULTS

Large sub-epithelial voids were observed in both healthy and scarred VFs immediately following in vivo laser treatment. Two-photon imaging and histology confirmed ~3-mm wide subsurface voids in healthy and scarred VFs of canine #2. Biomaterial localization within a void created in the scarred VF of canine #2 was confirmed with fluorescence imaging but was not visualized during follow-up two-photon imaging. As an alternative, the biomaterial was injected into the excised VF and could be observed to localize within the void.

CONCLUSIONS

We demonstrated sub-epithelial void formation and the ability to inject biomaterials into voids in a chronic VF scarring model. This proof-of-concept study provides preliminary evidence towards the clinical feasibility of such an approach to treating VF scarring using injectable biomaterials.

LEVEL OF EVIDENCES

N/A Laryngoscope, 133:3042-3048, 2023.

摘要

背景/目的:聚焦紧密的超快速激光脉冲(脉宽为 100fs-10ps)可提供高强度峰值,以产生空间受限的组织烧蚀效应。通过超快激光烧蚀在瘢痕性声带(VF)内创建亚上皮空隙,可能有助于将可注射生物材料定位用于治疗 VF 瘢痕。在这里,我们使用定制的喉内激光手术探头在动物模型中证明了该技术的可行性。

方法

在两只犬中创建单侧 VF 黏膜损伤。四个月后,通过定制的激光探头输送超短激光脉冲(500kHz 时为 5ps 脉冲),以在健康和瘢痕化的 VF 中创建约 3×3mm 的亚上皮空隙。将 PEG-罗丹明注入这些空隙中。使用离体光学成像和组织学评估空隙形态和生物材料定位。

结果

在体内激光治疗后,立即在健康和瘢痕化的 VF 中观察到大的亚上皮空隙。双光子成像和组织学证实,在犬 2 的健康和瘢痕化 VF 中存在约 3mm 宽的亚表面空隙。在犬 2 的瘢痕化 VF 中创建的空隙内的生物材料定位通过荧光成像得到证实,但在后续的双光子成像中未观察到。作为替代方法,将生物材料注入切除的 VF 中,并可以观察到其在空隙内定位。

结论

我们在慢性 VF 瘢痕形成模型中证明了亚上皮空隙的形成和向空隙内注射生物材料的能力。这项概念验证研究初步证明了在 VF 瘢痕治疗中使用可注射生物材料采用这种方法的临床可行性。

证据水平

无。喉镜,133:3042-3048,2023。

相似文献

1
Ultrafast Laser Microlaryngeal Surgery for In Vivo Subepithelial Void Creation in Canine Vocal Folds.
Laryngoscope. 2023 Nov;133(11):3042-3048. doi: 10.1002/lary.30713. Epub 2023 Apr 25.
5
Towards endoscopic ultrafast laser microsurgery of vocal folds.
J Biomed Opt. 2012 Mar;17(3):038002. doi: 10.1117/1.JBO.17.3.038002.
7
Restructuring the vocal fold lamina propria with endoscopic microdissection.
Laryngoscope. 2013 Nov;123(11):2780-6. doi: 10.1002/lary.24146. Epub 2013 Aug 19.
9
11.7 Tesla magnetic resonance microimaging of laryngeal tissue architecture.
Laryngoscope. 2009 Nov;119(11):2187-94. doi: 10.1002/lary.20643.
10
Drug delivery system of hepatocyte growth factor for the treatment of vocal fold scarring in a canine model.
Ann Otol Rhinol Laryngol. 2007 Oct;116(10):762-9. doi: 10.1177/000348940711601008.

引用本文的文献

1
Preclinical Vocal Fold and Airway Injury Models: A Scoping Review.
Laryngoscope Investig Otolaryngol. 2025 Jul 31;10(4):e70173. doi: 10.1002/lio2.70173. eCollection 2025 Aug.
2
Emerging ultrafast technologies in biotechnology.
3 Biotech. 2025 May;15(5):142. doi: 10.1007/s13205-025-04309-2. Epub 2025 Apr 24.

本文引用的文献

4
A tissue-specific, injectable acellular gel for the treatment of chronic vocal fold scarring.
Acta Biomater. 2019 Nov;99:141-153. doi: 10.1016/j.actbio.2019.08.025. Epub 2019 Aug 16.
5
Incorporation of types I and III collagen in tunable hyaluronan hydrogels for vocal fold tissue engineering.
Acta Biomater. 2019 Mar 15;87:97-107. doi: 10.1016/j.actbio.2019.01.058. Epub 2019 Jan 30.
6
In Vivo Femtosecond Laser Subsurface Cortical Microtransections Attenuate Acute Rat Focal Seizures.
Cereb Cortex. 2019 Jul 22;29(8):3415-3426. doi: 10.1093/cercor/bhy210.
7
Repairing the vibratory vocal fold.
Laryngoscope. 2018 Jan;128(1):153-159. doi: 10.1002/lary.26801. Epub 2017 Aug 3.
8
Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration.
Biomaterials. 2016 Nov;108:91-110. doi: 10.1016/j.biomaterials.2016.08.054. Epub 2016 Sep 2.
9
Bioengineered vocal fold mucosa for voice restoration.
Sci Transl Med. 2015 Nov 18;7(314):314ra187. doi: 10.1126/scitranslmed.aab4014.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验