Jahan Israt, Harun-Ur-Rashid Mohammad, Almuhayawi Mohammed S, Al Jaouni Soad K, Selim Samy
Air Quality and Environmental Pollution Research Laboratory (AQEPRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, 1000, Dhaka, Bangladesh.
Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Dhaka, 1230 Bangladesh.
3 Biotech. 2025 May;15(5):142. doi: 10.1007/s13205-025-04309-2. Epub 2025 Apr 24.
This review highlights the transformative applications of ultrafast technologies in biotechnology, focusing on their ability to provide real-time visualization and precise manipulation of biomolecular processes. Femtosecond lasers have enhanced precision in gene editing, minimizing off-target effects, while ultrafast spectroscopy has advanced understanding of protein folding pathways, enzymatic activity, and energy transfer mechanisms. Notable findings include the identification of protein folding intermediates linked to misfolding diseases, improved insights into enzymatic catalysis through hydration studies, and the development of real-time monitoring systems for CRISPR gene editing. Imaging innovations such as pump-probe microscopy and Coherent Anti-Stokes Raman Scattering (CARS) enable high-resolution observation of cellular dynamics, intracellular signaling, and neural activity. Furthermore, attosecond spectroscopy has provided unprecedented insights into ultrafast electron dynamics and charge migration. Integrating ultrafast technologies with AI and nanotechnology has accelerated advances in diagnostics, personalized medicine, and synthetic biology, driving breakthroughs in drug discovery, targeted therapeutics, and regenerative medicine. Despite challenges such as photodamage, integration with complex biological systems, and ethical considerations, ongoing advancements in ultrafast technologies are set to revolutionize biotechnology. These innovations hold immense potential for addressing critical challenges in healthcare and life sciences, enabling transformative progress in understanding and treating complex diseases.
本综述重点介绍了超快技术在生物技术中的变革性应用,着重阐述了其对生物分子过程进行实时可视化和精确操纵的能力。飞秒激光提高了基因编辑的精度,将脱靶效应降至最低,而超快光谱学则推动了对蛋白质折叠途径、酶活性和能量转移机制的理解。显著的研究成果包括识别与错误折叠疾病相关的蛋白质折叠中间体、通过水合作用研究对酶催化有了更深入的了解,以及开发用于CRISPR基因编辑的实时监测系统。诸如泵浦-探测显微镜和相干反斯托克斯拉曼散射(CARS)等成像创新技术能够对细胞动力学、细胞内信号传导和神经活动进行高分辨率观察。此外,阿秒光谱学为超快电子动力学和电荷迁移提供了前所未有的见解。将超快技术与人工智能和纳米技术相结合,加速了诊断、个性化医疗和合成生物学的进展,推动了药物发现、靶向治疗和再生医学的突破。尽管存在诸如光损伤、与复杂生物系统整合以及伦理考量等挑战,但超快技术的不断进步必将彻底改变生物技术。这些创新对于应对医疗保健和生命科学中的关键挑战具有巨大潜力,能够在理解和治疗复杂疾病方面取得变革性进展。
3 Biotech. 2025-5
Arch Ital Urol Androl. 2025-6-30
Methods Mol Biol. 2025
J Mater Chem B. 2025-6-18
JMIR Mhealth Uhealth. 2025-6-13
Acc Chem Res. 2025-6-17
Methods Mol Biol. 2025
J Synchrotron Radiat. 2024-7-1
Proc Natl Acad Sci U S A. 2024-4-2
J Am Chem Soc. 2023-12-20
J Phys Chem Lett. 2023-11-9
J Am Chem Soc. 2023-6-7
J Phys Chem Lett. 2023-6-1