Suppr超能文献

微生物氮磷共限制作用跨越多年冻土区。

Microbial nitrogen and phosphorus co-limitation across permafrost region.

机构信息

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Glob Chang Biol. 2023 Jul;29(14):3910-3923. doi: 10.1111/gcb.16743. Epub 2023 May 9.

Abstract

The status of plant and microbial nutrient limitation have profound impacts on ecosystem carbon cycle in permafrost areas, which store large amounts of carbon and experience pronounced climatic warming. Despite the long-term standing paradigm assumes that cold ecosystems primarily have nitrogen deficiency, large-scale empirical tests of microbial nutrient limitation are lacking. Here we assessed the potential microbial nutrient limitation across the Tibetan alpine permafrost region, using the combination of enzymatic and elemental stoichiometry, genes abundance and fertilization method. In contrast with the traditional view, the four independent approaches congruently detected widespread microbial nitrogen and phosphorus co-limitation in both the surface soil and deep permafrost deposits, with stronger limitation in the topsoil. Further analysis revealed that soil resources stoichiometry and microbial community composition were the two best predictors of the magnitude of microbial nutrient limitation. High ratio of available soil carbon to nutrient and low fungal/bacterial ratio corresponded to strong microbial nutrient limitation. These findings suggest that warming-induced enhancement in soil nutrient availability could stimulate microbial activity, and probably amplify soil carbon losses from permafrost areas.

摘要

植物和微生物养分限制的状况对多年冻土区生态系统的碳循环有深远的影响,这些地区储存了大量的碳,且经历了明显的气候变暖。尽管长期以来的观点认为寒冷的生态系统主要存在氮缺乏的问题,但缺乏对微生物养分限制的大规模实证检验。在这里,我们使用酶和元素化学计量学、基因丰度和施肥方法的组合,评估了青藏高原多年冻土区的潜在微生物养分限制。与传统观点相反,这四种独立的方法一致地检测到了表层土壤和深层多年冻土沉积物中广泛存在的微生物氮磷共限制,表土中的限制更强。进一步的分析表明,土壤资源化学计量和微生物群落组成是微生物养分限制程度的两个最佳预测因子。可用土壤碳与养分的高比值和真菌/细菌比值低与强烈的微生物养分限制相对应。这些发现表明,变暖引起的土壤养分有效性的增强可能会刺激微生物活性,并可能放大多年冻土区土壤碳的损失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验