Suppr超能文献

自动化富集磷酸化酪氨酸肽用于高通量蛋白质组学。

Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics.

机构信息

Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States.

出版信息

J Proteome Res. 2023 Jun 2;22(6):1868-1880. doi: 10.1021/acs.jproteome.2c00850. Epub 2023 Apr 25.

Abstract

Phosphotyrosine (pY) enrichment is critical for expanding the fundamental and clinical understanding of cellular signaling by mass spectrometry-based proteomics. However, current pY enrichment methods exhibit a high cost per sample and limited reproducibility due to expensive affinity reagents and manual processing. We present rapid-robotic phosphotyrosine proteomics (R2-pY), which uses a magnetic particle processor and pY superbinders or antibodies. R2-pY can handle up to 96 samples in parallel, requires 2 days to go from cell lysate to mass spectrometry injections, and results in global proteomic, phosphoproteomic, and tyrosine-specific phosphoproteomic samples. We benchmark the method on HeLa cells stimulated with pervanadate and serum and report over 4000 unique pY sites from 1 mg of peptide input, strong reproducibility between replicates, and phosphopeptide enrichment efficiencies above 99%. R2-pY extends our previously reported R2-P2 proteomic and global phosphoproteomic sample preparation framework, opening the door to large-scale studies of pY signaling in concert with global proteome and phosphoproteome profiling.

摘要

磷酸化酪氨酸(pY)富集对于通过基于质谱的蛋白质组学扩大对细胞信号转导的基础和临床理解至关重要。然而,由于昂贵的亲和试剂和手动处理,当前的 pY 富集方法每样本成本高且重现性有限。我们提出了快速机器人磷酸化蛋白质组学(R2-pY),它使用磁性颗粒处理器和 pY 超级结合剂或抗体。R2-pY 可以同时处理多达 96 个样本,从细胞裂解物到质谱注射需要 2 天,并且可以得到全局蛋白质组学、磷酸化蛋白质组学和酪氨酸特异性磷酸化蛋白质组学样本。我们在过钒酸盐和血清刺激的 HeLa 细胞上对该方法进行了基准测试,报告了来自 1 毫克肽输入的超过 4000 个独特的 pY 位点,重复之间具有很强的重现性,磷酸肽富集效率超过 99%。R2-pY 扩展了我们之前报道的 R2-P2 蛋白质组学和全局磷酸化蛋白质组学样品制备框架,为大规模研究 pY 信号与全局蛋白质组和磷酸化蛋白质组谱的协同作用打开了大门。

相似文献

1
Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics.
J Proteome Res. 2023 Jun 2;22(6):1868-1880. doi: 10.1021/acs.jproteome.2c00850. Epub 2023 Apr 25.
2
Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics.
bioRxiv. 2023 Jan 6:2023.01.05.522335. doi: 10.1101/2023.01.05.522335.
6
Mutation-induced rigidity in the Fyn SH2 domain enhances pY-binding affinity at the cost of peptide specificity.
Phys Chem Chem Phys. 2025 Jun 18;27(24):13091-13102. doi: 10.1039/d5cp00015g.
8
Phosphotyrosine Biased Enrichment of Tryptic Peptides from Cancer Cells by Combining pY-MIP and TiO Affinity Resins.
Anal Chem. 2017 Nov 7;89(21):11332-11340. doi: 10.1021/acs.analchem.7b02091. Epub 2017 Oct 25.
10
Establishing Quality Control Procedures for Large-Scale Plasma Proteomics Analyses.
J Am Soc Mass Spectrom. 2023 Jun 7;34(6):1105-1116. doi: 10.1021/jasms.3c00050. Epub 2023 May 10.

引用本文的文献

1
R2HaPpY: Rapid-robust phosphotyrosine peptide enrichment using HaloTag-Src SH2 pY superbinder.
bioRxiv. 2025 May 17:2025.05.14.653984. doi: 10.1101/2025.05.14.653984.
2
Mass-spectrometry-based proteomics: from single cells to clinical applications.
Nature. 2025 Feb;638(8052):901-911. doi: 10.1038/s41586-025-08584-0. Epub 2025 Feb 26.
3
Advancements in Global Phosphoproteomics Profiling: Overcoming Challenges in Sensitivity and Quantification.
Proteomics. 2025 Jan;25(1-2):e202400087. doi: 10.1002/pmic.202400087. Epub 2024 Dec 18.
4
Carafe enables high quality spectral library generation for data-independent acquisition proteomics.
bioRxiv. 2024 Oct 18:2024.10.15.618504. doi: 10.1101/2024.10.15.618504.
5
Dear-PSM: A deep learning-based peptide search engine enables full database search for proteomics.
Smart Med. 2024 Aug 27;3(3):e20240014. doi: 10.1002/SMMD.20240014. eCollection 2024 Sep.
6
Automated Immunoprecipitation Workflow for Comprehensive Acetylome Analysis.
Methods Mol Biol. 2024;2823:173-191. doi: 10.1007/978-1-0716-3922-1_12.

本文引用的文献

1
The regulatory landscape of the yeast phosphoproteome.
Nat Struct Mol Biol. 2023 Nov;30(11):1761-1773. doi: 10.1038/s41594-023-01115-3. Epub 2023 Oct 16.
2
Engineered SH2 Domains for Targeted Phosphoproteomics.
ACS Chem Biol. 2022 Jun 17;17(6):1472-1484. doi: 10.1021/acschembio.2c00051. Epub 2022 May 25.
3
Automating UbiFast for High-throughput and Multiplexed Ubiquitin Enrichment.
Mol Cell Proteomics. 2021;20:100154. doi: 10.1016/j.mcpro.2021.100154. Epub 2021 Sep 27.
4
Decoding Post-Translational Modification Crosstalk With Proteomics.
Mol Cell Proteomics. 2021;20:100129. doi: 10.1016/j.mcpro.2021.100129. Epub 2021 Jul 30.
5
Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome.
Mol Cell Proteomics. 2020 Apr;19(4):730-743. doi: 10.1074/mcp.TIR119.001865. Epub 2020 Feb 18.
6
R2-P2 rapid-robotic phosphoproteomics enables multidimensional cell signaling studies.
Mol Syst Biol. 2019 Dec;15(12):e9021. doi: 10.15252/msb.20199021.
7
One-Step SH2 Superbinder-Based Approach for Sensitive Analysis of Tyrosine Phosphoproteome.
J Proteome Res. 2019 Apr 5;18(4):1870-1879. doi: 10.1021/acs.jproteome.9b00045. Epub 2019 Mar 25.
8
Using Ubiquitin Binders to Decipher the Ubiquitin Code.
Trends Biochem Sci. 2019 Jul;44(7):599-615. doi: 10.1016/j.tibs.2019.01.011. Epub 2019 Feb 25.
9
Single-pot, solid-phase-enhanced sample preparation for proteomics experiments.
Nat Protoc. 2019 Jan;14(1):68-85. doi: 10.1038/s41596-018-0082-x.
10
Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis.
Protein Sci. 2019 Feb;28(2):403-413. doi: 10.1002/pro.3551. Epub 2018 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验