使用影像学预测模型免除早期乳腺癌患者的腋窝手术。
Use of imaging prediction model for omission of axillary surgery in early-stage breast cancer patients.
机构信息
Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
Department of Radiology, Seoul National College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
出版信息
Breast Cancer Res Treat. 2023 Jun;199(3):489-499. doi: 10.1007/s10549-023-06952-w. Epub 2023 Apr 25.
PURPOSE
To develop a prediction model incorporating clinicopathological information, US, and MRI to diagnose axillary lymph node (LN) metastasis with acceptable false negative rate (FNR) in patients with early stage, clinically node-negative breast cancers.
METHODS
In this single center retrospective study, the inclusion criteria comprised women with clinical T1 or T2 and N0 breast cancers who underwent preoperative US and MRI between January 2017 and July 2018. Patients were temporally divided into the development and validation cohorts. Clinicopathological information, US, and MRI findings were collected. Two prediction models (US model and combined US and MRI model) were created using logistic regression analysis from the development cohort. FNRs of the two models were compared using the McNemar test.
RESULTS
A total of 964 women comprised the development (603 women, 54 ± 11 years) and validation (361 women, 53 ± 10 years) cohorts with 107 (18%) and 77 (21%) axillary LN metastases in each cohort, respectively. The US model consisted of tumor size and morphology of LN on US. The combined US and MRI model consisted of asymmetry of LN number, long diameter of LN, tumor type, and multiplicity of breast cancers on MRI, in addition to tumor size and morphology of LN on US. The combined model showed significantly lower FNR than the US model in both development (5% vs. 32%, P < .001) and validation (9% vs. 35%, P < .001) cohorts.
CONCLUSION
Our prediction model combining US and MRI characteristics of index cancer and LN lowered FNR compared to using US alone, and could potentially lead to avoid unnecessary SLNB in early stage, clinically node-negative breast cancers.
目的
开发一种结合临床病理信息、超声和 MRI 的预测模型,以在临床淋巴结阴性的早期乳腺癌患者中获得可接受的假阴性率(FNR)来诊断腋窝淋巴结(LN)转移。
方法
在这项单中心回顾性研究中,纳入标准包括接受术前超声和 MRI 检查的临床 T1 或 T2 期和 N0 乳腺癌患者,这些患者于 2017 年 1 月至 2018 年 7 月期间入组。患者根据时间分为开发和验证队列。收集临床病理信息、超声和 MRI 检查结果。使用来自开发队列的逻辑回归分析创建两个预测模型(超声模型和联合超声和 MRI 模型)。使用 McNemar 检验比较两个模型的 FNR。
结果
共有 964 名女性入组,其中 603 名(54 ± 11 岁)女性入组开发队列,361 名(53 ± 10 岁)女性入组验证队列,每组分别有 107(18%)和 77(21%)例腋窝 LN 转移。超声模型由 LN 在超声上的大小和形态组成。联合超声和 MRI 模型由 LN 数量、长径、肿瘤类型和 MRI 上乳腺癌的多发性的不对称组成,此外还有 LN 在超声上的大小和形态。在开发(5%比 32%,P < 0.001)和验证(9%比 35%,P < 0.001)队列中,联合模型的 FNR 均显著低于超声模型。
结论
与单独使用超声相比,我们联合使用指数癌和 LN 的超声和 MRI 特征的预测模型降低了 FNR,这可能有助于避免对早期临床淋巴结阴性的乳腺癌进行不必要的 SLNB。