Suppr超能文献

利用计算机视觉方法成功检测根管治疗封闭和从嘈杂的射线照片中进展的实验验证。

Experimental validation of computer-vision methods for the successful detection of endodontic treatment obturation and progression from noisy radiographs.

机构信息

Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh.

Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Level 10, AHMS Building, Adelaide, South Australia, 5000, Australia.

出版信息

Oral Radiol. 2023 Oct;39(4):683-698. doi: 10.1007/s11282-023-00685-8. Epub 2023 Apr 25.

Abstract

PURPOSE

(1) To evaluate the effects of denoising and data balancing on deep learning to detect endodontic treatment outcomes from radiographs. (2) To develop and train a deep-learning model and classifier to predict obturation quality from radiomics.

METHODS

The study conformed to the STARD 2015 and MI-CLAIMS 2021 guidelines. 250 deidentified dental radiographs were collected and augmented to produce 2226 images. The dataset was classified according to endodontic treatment outcomes following a set of customized criteria. The dataset was denoised and balanced, and processed with YOLOv5s, YOLOv5x, and YOLOv7 models of real-time deep-learning computer vision. Diagnostic test parameters such as sensitivity (Sn), specificity (Sp), accuracy (Ac), precision, recall, mean average precision (mAP), and confidence were evaluated.

RESULTS

Overall accuracy for all the deep-learning models was above 85%. Imbalanced datasets with noise removal led to YOLOv5x's prediction accuracy to drop to 72%, while balancing and noise removal led to all three models performing at over 95% accuracy. mAP saw an improvement from 52 to 92% following balancing and denoising.

CONCLUSION

The current study of computer vision applied to radiomic datasets successfully classified endodontic treatment obturation and mishaps according to a custom progressive classification system and serves as a foundation to larger research on the subject matter.

摘要

目的

(1)评估去噪和数据平衡对深度学习从射线照片中检测根管治疗结果的影响。(2)开发和训练深度学习模型和分类器,以从放射组学预测封闭质量。

方法

本研究符合 STARD 2015 和 MI-CLAIMS 2021 指南。收集了 250 张未识别的牙科射线照片,并进行了扩充,以生成 2226 张图像。数据集根据一套定制标准,按照根管治疗结果进行分类。对数据集进行去噪和平衡处理,并使用实时深度学习计算机视觉的 YOLOv5s、YOLOv5x 和 YOLOv7 模型进行处理。评估了诊断测试参数,如灵敏度(Sn)、特异性(Sp)、准确性(Ac)、精度、召回率、平均精度(mAP)和置信度。

结果

所有深度学习模型的总体准确性均高于 85%。经过去噪和平衡处理后,不平衡数据集的 YOLOv5x 预测准确性降至 72%,而所有三个模型的准确性均超过 95%。经过平衡和去噪处理后,mAP 从 52%提高到 92%。

结论

本研究应用计算机视觉对放射组学数据集进行分类,根据定制的渐进分类系统成功分类根管治疗封闭和事故,为该主题的更大规模研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c23b/10504118/c8562e39af20/11282_2023_685_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验