Biomedical Engineering Department, Peking University, Beijing 100191, P. R. China.
College of Future Technology, Peking University, Beijing 100091, P. R. China.
ACS Appl Mater Interfaces. 2023 May 10;15(18):21941-21952. doi: 10.1021/acsami.3c02361. Epub 2023 Apr 26.
Radiodynamic therapy (RDT), which produces O and other reactive oxygen species (ROS) in response to X-rays, can be used in conjunction with radiation therapy (RT) to drastically lower X-ray dosage and reduce radio resistance associated with conventional radiation treatment. However, radiation-radiodynamic therapy (RT-RDT) is still impotent in a hypoxic environment in solid tumors due to its oxygen-dependent nature. Chemodynamic therapy (CDT) can generate reactive oxygen species and O by decomposing HO in hypoxic cells and thus potentiate RT-RDT to achieve synergy. Herein, we developed a multifunctional nanosystem, AuCu-Ce6-TPP (ACCT), for RT-RDT-CDT. Ce6 photosensitizers were conjugated to AuCu nanoparticles via Au-S bonds to realize radiodynamic sensitization. Cu can be oxidized by HO and catalyze the degradation of HO to generate OH through the Fenton-like reaction to realize CDT. Meanwhile, the degradation byproduct oxygen can alleviate hypoxia while Au can consume glutathione to increase the oxidative stress. We then attached mercaptoethyl-triphenylphosphonium (TPP-SH) to the nanosystem, targeting ACCT to mitochondria (colocalization Pearson coefficient 0.98) to directly disrupt mitochondrial membranes and more efficiently induce apoptosis. We confirmed that ACCT efficiently generates O and OH upon X-ray irradiation, resulting in strong anticancer efficacy in both normoxic and hypoxic 4T1 cells. The down-regulation of hypoxia-inducible factor 1α expression and reduction of intracellular HO concentrations suggested that ACCT could significantly alleviate hypoxia in 4T1 cells. ACCT-enhanced RT-RDT-CDT can successfully shrink or remove tumors in radioresistant 4T1 tumor-bearing mice upon 4 Gy of X-ray irradiation. Our work thus presents a new strategy to treat radioresistant hypoxic tumors.
放射动力学疗法(RDT)可响应 X 射线产生 O 和其他活性氧物质(ROS),可与放射疗法(RT)联合使用,大幅降低 X 射线剂量并减少与传统放射治疗相关的放射抗性。然而,由于其氧依赖性,放射动力学治疗(RT-RDT)在实体肿瘤的缺氧环境中仍然无效。化学动力学治疗(CDT)可以通过在缺氧细胞中分解 HO 产生活性氧物质和 O,从而增强 RT-RDT 以实现协同作用。在此,我们开发了一种多功能纳米系统,AuCu-Ce6-TPP(ACCT),用于 RT-RDT-CDT。Ce6 光敏剂通过 Au-S 键连接到 AuCu 纳米颗粒上,以实现放射动力学敏化。Cu 可以被 HO 氧化,并通过芬顿样反应催化 HO 的降解,生成 OH,从而实现 CDT。同时,降解副产物氧气可以缓解缺氧,而 Au 可以消耗谷胱甘肽来增加氧化应激。然后,我们将巯基乙基三苯基膦(TPP-SH)连接到纳米系统上,使 ACCT 靶向线粒体(共定位 Pearson 系数 0.98),直接破坏线粒体膜,并更有效地诱导细胞凋亡。我们证实,ACCT 在 X 射线照射下能有效产生 O 和 OH,从而在常氧和缺氧 4T1 细胞中产生强烈的抗癌疗效。缺氧诱导因子 1α 表达的下调和细胞内 HO 浓度的降低表明,ACCT 可以显著减轻 4T1 细胞的缺氧。在 4 Gy X 射线照射下,ACCT 增强的 RT-RDT-CDT 可以成功缩小或消除耐辐射 4T1 肿瘤荷瘤小鼠的肿瘤。我们的工作因此提出了一种治疗耐辐射缺氧肿瘤的新策略。