Suppr超能文献

线粒体靶向纳米系统增强三阴性乳腺癌的放辐射化学动力学治疗。

Mitochondria-Targeted Nanosystem Enhances Radio-Radiodynamic-Chemodynamic Therapy on Triple Negative Breast Cancer.

机构信息

Biomedical Engineering Department, Peking University, Beijing 100191, P. R. China.

College of Future Technology, Peking University, Beijing 100091, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2023 May 10;15(18):21941-21952. doi: 10.1021/acsami.3c02361. Epub 2023 Apr 26.

Abstract

Radiodynamic therapy (RDT), which produces O and other reactive oxygen species (ROS) in response to X-rays, can be used in conjunction with radiation therapy (RT) to drastically lower X-ray dosage and reduce radio resistance associated with conventional radiation treatment. However, radiation-radiodynamic therapy (RT-RDT) is still impotent in a hypoxic environment in solid tumors due to its oxygen-dependent nature. Chemodynamic therapy (CDT) can generate reactive oxygen species and O by decomposing HO in hypoxic cells and thus potentiate RT-RDT to achieve synergy. Herein, we developed a multifunctional nanosystem, AuCu-Ce6-TPP (ACCT), for RT-RDT-CDT. Ce6 photosensitizers were conjugated to AuCu nanoparticles via Au-S bonds to realize radiodynamic sensitization. Cu can be oxidized by HO and catalyze the degradation of HO to generate OH through the Fenton-like reaction to realize CDT. Meanwhile, the degradation byproduct oxygen can alleviate hypoxia while Au can consume glutathione to increase the oxidative stress. We then attached mercaptoethyl-triphenylphosphonium (TPP-SH) to the nanosystem, targeting ACCT to mitochondria (colocalization Pearson coefficient 0.98) to directly disrupt mitochondrial membranes and more efficiently induce apoptosis. We confirmed that ACCT efficiently generates O and OH upon X-ray irradiation, resulting in strong anticancer efficacy in both normoxic and hypoxic 4T1 cells. The down-regulation of hypoxia-inducible factor 1α expression and reduction of intracellular HO concentrations suggested that ACCT could significantly alleviate hypoxia in 4T1 cells. ACCT-enhanced RT-RDT-CDT can successfully shrink or remove tumors in radioresistant 4T1 tumor-bearing mice upon 4 Gy of X-ray irradiation. Our work thus presents a new strategy to treat radioresistant hypoxic tumors.

摘要

放射动力学疗法(RDT)可响应 X 射线产生 O 和其他活性氧物质(ROS),可与放射疗法(RT)联合使用,大幅降低 X 射线剂量并减少与传统放射治疗相关的放射抗性。然而,由于其氧依赖性,放射动力学治疗(RT-RDT)在实体肿瘤的缺氧环境中仍然无效。化学动力学治疗(CDT)可以通过在缺氧细胞中分解 HO 产生活性氧物质和 O,从而增强 RT-RDT 以实现协同作用。在此,我们开发了一种多功能纳米系统,AuCu-Ce6-TPP(ACCT),用于 RT-RDT-CDT。Ce6 光敏剂通过 Au-S 键连接到 AuCu 纳米颗粒上,以实现放射动力学敏化。Cu 可以被 HO 氧化,并通过芬顿样反应催化 HO 的降解,生成 OH,从而实现 CDT。同时,降解副产物氧气可以缓解缺氧,而 Au 可以消耗谷胱甘肽来增加氧化应激。然后,我们将巯基乙基三苯基膦(TPP-SH)连接到纳米系统上,使 ACCT 靶向线粒体(共定位 Pearson 系数 0.98),直接破坏线粒体膜,并更有效地诱导细胞凋亡。我们证实,ACCT 在 X 射线照射下能有效产生 O 和 OH,从而在常氧和缺氧 4T1 细胞中产生强烈的抗癌疗效。缺氧诱导因子 1α 表达的下调和细胞内 HO 浓度的降低表明,ACCT 可以显著减轻 4T1 细胞的缺氧。在 4 Gy X 射线照射下,ACCT 增强的 RT-RDT-CDT 可以成功缩小或消除耐辐射 4T1 肿瘤荷瘤小鼠的肿瘤。我们的工作因此提出了一种治疗耐辐射缺氧肿瘤的新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验