Suppr超能文献

在 M 期到 G1 期的转变过程中基因组的折叠动力学。

Genome folding dynamics during the M-to-G1-phase transition.

机构信息

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.

Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Curr Opin Genet Dev. 2023 Jun;80:102036. doi: 10.1016/j.gde.2023.102036. Epub 2023 Apr 24.

Abstract

All measurable features of higher-order chromosomal architecture undergo drastic reorganization as cells enter and exit mitosis. During mitosis, gene transcription is temporarily halted, the nuclear envelope is dismantled, and chromosomes undergo condensation. At this time, chromatin compartments, topologically associating domains (TADs), and loops that connect enhancers with promoters as well as CTCF/cohesin loops are dissolved. Upon G1 entry, genome organization is rebuilt in the daughter nuclei to resemble that of the mother nucleus. We survey recent studies that traced these features in relation to gene expression during the mitosis-to-G1-phase transition at high temporal resolution. Dissection of fluctuating architectural features informed the hierarchical relationships of chromosomal organization, the mechanisms by which they are formed, and their mutual (in-) dependence. These studies highlight the importance of considering the cell cycle dynamics for studies of chromosomal organization.

摘要

在细胞进入有丝分裂和退出有丝分裂的过程中,高级染色体结构的所有可测量特征都会发生剧烈的重组。在有丝分裂过程中,基因转录暂时停止,核膜解体,染色体发生浓缩。此时,染色质隔室、拓扑关联域 (TAD) 以及连接增强子与启动子的环以及 CTCF/黏合环都会溶解。进入 G1 期后,基因组组织在子核中重建,以类似于母核的方式。我们调查了最近的研究,这些研究在高时间分辨率下追踪了有丝分裂到 G1 期转变过程中与基因表达相关的这些特征。对波动的结构特征的剖析揭示了染色体组织的层次关系、它们形成的机制以及它们的相互(不)依赖性。这些研究强调了在研究染色体组织时考虑细胞周期动态的重要性。

相似文献

1
Genome folding dynamics during the M-to-G1-phase transition.
Curr Opin Genet Dev. 2023 Jun;80:102036. doi: 10.1016/j.gde.2023.102036. Epub 2023 Apr 24.
2
Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
EMBO J. 2017 Dec 15;36(24):3573-3599. doi: 10.15252/embj.201798004. Epub 2017 Dec 7.
3
Absolute quantification of cohesin, CTCF and their regulators in human cells.
Elife. 2019 Jun 17;8:e46269. doi: 10.7554/eLife.46269.
4
Architectural proteins for the formation and maintenance of the 3D genome.
Sci China Life Sci. 2020 Jun;63(6):795-810. doi: 10.1007/s11427-019-1613-3. Epub 2020 Apr 2.
5
Chromatin structure dynamics during the mitosis-to-G1 phase transition.
Nature. 2019 Dec;576(7785):158-162. doi: 10.1038/s41586-019-1778-y. Epub 2019 Nov 27.
6
A tour of 3D genome with a focus on CTCF.
Semin Cell Dev Biol. 2019 Jun;90:4-11. doi: 10.1016/j.semcdb.2018.07.020. Epub 2018 Jul 23.
7
YY1-controlled regulatory connectivity and transcription are influenced by the cell cycle.
Nat Genet. 2024 Sep;56(9):1938-1952. doi: 10.1038/s41588-024-01871-y. Epub 2024 Aug 29.
8
CTCF and transcription influence chromatin structure re-configuration after mitosis.
Nat Commun. 2021 Aug 27;12(1):5157. doi: 10.1038/s41467-021-25418-5.
9
Cohesin and CTCF do not assemble TADs in sperm and male pronuclei.
Genome Res. 2023 Dec 27;33(12):2094-2107. doi: 10.1101/gr.277865.123.

引用本文的文献

1
Establishment of a leaf regeneration system and its molecular basis in Poplar 741.
BMC Plant Biol. 2025 Aug 19;25(1):1100. doi: 10.1186/s12870-025-07091-8.
2
Roles for the 3D genome in the cell cycle, DNA replication, and double strand break repair.
Front Cell Dev Biol. 2025 Feb 27;13:1548946. doi: 10.3389/fcell.2025.1548946. eCollection 2025.
3
Dynamics of microcompartment formation at the mitosis-to-G1 transition.
bioRxiv. 2024 Sep 16:2024.09.16.611917. doi: 10.1101/2024.09.16.611917.
4
YY1-controlled regulatory connectivity and transcription are influenced by the cell cycle.
Nat Genet. 2024 Sep;56(9):1938-1952. doi: 10.1038/s41588-024-01871-y. Epub 2024 Aug 29.
5
Genome folding principles uncovered in condensin-depleted mitotic chromosomes.
Nat Genet. 2024 Jun;56(6):1213-1224. doi: 10.1038/s41588-024-01759-x. Epub 2024 May 27.
6
Genome folding principles revealed in condensin-depleted mitotic chromosomes.
bioRxiv. 2023 Nov 13:2023.11.09.566494. doi: 10.1101/2023.11.09.566494.
7
Maintaining transcriptional homeostasis during cell cycle.
Transcription. 2024 Feb-Apr;15(1-2):1-21. doi: 10.1080/21541264.2023.2246868. Epub 2023 Sep 1.

本文引用的文献

1
Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments.
Nat Genet. 2023 Jun;55(6):1048-1056. doi: 10.1038/s41588-023-01391-1. Epub 2023 May 8.
2
A cohesin traffic pattern genetically linked to gene regulation.
Nat Struct Mol Biol. 2022 Dec;29(12):1239-1251. doi: 10.1038/s41594-022-00890-9. Epub 2022 Dec 8.
3
A gene subset requires CTCF bookmarking during the fast post-mitotic reactivation of mouse ES cells.
EMBO Rep. 2023 Jan 9;24(1):e56075. doi: 10.15252/embr.202256075. Epub 2022 Nov 4.
4
SMC complexes can traverse physical roadblocks bigger than their ring size.
Cell Rep. 2022 Oct 18;41(3):111491. doi: 10.1016/j.celrep.2022.111491.
5
Maintaining Transcriptional Specificity Through Mitosis.
Annu Rev Genomics Hum Genet. 2022 Aug 31;23:53-71. doi: 10.1146/annurev-genom-121321-094603. Epub 2022 Apr 19.
6
RNA polymerase II is required for spatial chromatin reorganization following exit from mitosis.
Sci Adv. 2021 Oct 22;7(43):eabg8205. doi: 10.1126/sciadv.abg8205.
7
CTCF and transcription influence chromatin structure re-configuration after mitosis.
Nat Commun. 2021 Aug 27;12(1):5157. doi: 10.1038/s41467-021-25418-5.
8
Defining genome architecture at base-pair resolution.
Nature. 2021 Jul;595(7865):125-129. doi: 10.1038/s41586-021-03639-4. Epub 2021 Jun 9.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验