Suppr超能文献

分析亚千碱基染色质拓扑结构揭示了纳米级调控相互作用,这些相互作用依赖于黏连蛋白和 CTCF 的变化。

Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF.

机构信息

Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.

MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.

出版信息

Nat Commun. 2022 Apr 19;13(1):2139. doi: 10.1038/s41467-022-29696-5.

Abstract

Enhancers and promoters predominantly interact within large-scale topologically associating domains (TADs), which are formed by loop extrusion mediated by cohesin and CTCF. However, it is unclear whether complex chromatin structures exist at sub-kilobase-scale and to what extent fine-scale regulatory interactions depend on loop extrusion. To address these questions, we present an MNase-based chromosome conformation capture (3C) approach, which has enabled us to generate the most detailed local interaction data to date (20 bp resolution) and precisely investigate the effects of cohesin and CTCF depletion on chromatin architecture. Our data reveal that cis-regulatory elements have distinct internal nano-scale structures, within which local insulation is dependent on CTCF, but which are independent of cohesin. In contrast, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.

摘要

增强子和启动子主要在由黏合蛋白和 CTCF 介导的环挤压形成的大规模拓扑关联域(TADs)内相互作用。然而,目前尚不清楚是否存在亚千碱基尺度的复杂染色质结构,以及精细调控相互作用在多大程度上依赖于环挤压。为了解决这些问题,我们提出了一种基于 MNase 的染色质构象捕获(3C)方法,该方法使我们能够生成迄今为止最详细的局部相互作用数据(20bp 分辨率),并精确研究黏合蛋白和 CTCF 耗竭对染色质结构的影响。我们的数据表明,顺式调控元件具有独特的内部纳米尺度结构,其中局部隔离依赖于 CTCF,但不依赖于黏合蛋白。相比之下,我们发现黏合蛋白的耗竭会导致增强子-启动子相互作用的轻微减少,而 CTCF 的耗竭会导致调控接触的重新布线。总之,我们的数据表明,环挤压对于增强子-启动子相互作用不是必需的,但有助于其稳健性和特异性,并有助于基因表达的精确调控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8712/9019034/007df071419d/41467_2022_29696_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验