College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China.
School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China.
Sci Total Environ. 2023 Jul 20;883:163676. doi: 10.1016/j.scitotenv.2023.163676. Epub 2023 Apr 25.
Sulfamethoxazole (SMX, a sulfonamide antibiotic) is ubiquitously present in various aqueous systems, which can accelerate the spread of antibiotic resistance genes, induce genetic mutations, and even disrupt the ecological equilibrium. Considering the potential eco-environmental risk of SMX, this study explored an effective technology using Shewanella oneidensis MR-1 (MR-1) and nanoscale zero-valent iron-enriched biochar (nZVI-HBC) to remove SMX from aqueous systems with different pollution levels (1-30 mg·L). SMX removal by nZVI-HBC and nZVI-HBC + MR-1 (55-100 %) under optimal conditions (iron/HBC ratio of 1:5, 4 g·L nZVI-HBC, and 10 % v/v MR-1) was more effective than its removal by MR-1 and biochar (HBC) (8-35 %). This was due to the catalytic degradation of SMX in the nZVI-HBC and nZVI-HBC + MR-1 reaction systems because of accelerated electron transfer during oxidation of nZVI and reduction of Fe(III) to Fe(II). When SMX concentration was lower than 10 mg·L, nZVI-HBC + MR-1 effectively removed SMX (removal rate of approximately 100 %) when compared to nZVI-HBC (removal rate of 56-79 %). In addition to oxidation degradation of SMX by nZVI in the nZVI-HBC + MR-1 reaction system, MR-1-driven dissimilatory iron reduction accelerated electron transfer to SMX, thereby enhancing reductive degradation of SMX. However, a considerable decline in SMX removal from the nZVI-HBC + MR-1 system (42 %) was observed when SMX concentrations ranged 15-30 mg·L, which was due to the toxicity of accumulated degradation products of SMX. A high interaction probability between SMX and nZVI-HBC promoted the catalytic degradation of SMX in the nZVI-HBC reaction system. The results of this study provide promising strategies and insights for enhancing antibiotic removal from aqueous systems with different pollution levels.
磺胺甲恶唑(SMX,一种磺胺类抗生素)普遍存在于各种水系统中,它可以加速抗生素耐药基因的传播,诱导基因突变,甚至破坏生态平衡。考虑到 SMX 的潜在生态环境风险,本研究探索了一种使用希瓦氏菌属 MR-1(MR-1)和纳米零价铁富集生物炭(nZVI-HBC)从不同污染水平(1-30mg·L)的水系统中去除 SMX 的有效技术。在最佳条件下(铁/生物炭比为 1:5、4g·L nZVI-HBC 和 10%v/v MR-1),nZVI-HBC 和 nZVI-HBC+MR-1(55-100%)对 SMX 的去除率比 MR-1 和生物炭(HBC)(8-35%)更有效。这是由于在 nZVI-HBC 和 nZVI-HBC+MR-1 反应系统中,SMX 的催化降解,因为 nZVI 的氧化和 Fe(III)到 Fe(II)的还原过程中加速了电子转移。当 SMX 浓度低于 10mg·L 时,与 nZVI-HBC(去除率为 56-79%)相比,nZVI-HBC+MR-1 有效地去除了 SMX(去除率约为 100%)。除了 nZVI-HBC+MR-1 反应系统中 nZVI 对 SMX 的氧化降解外,MR-1 驱动的异化铁还原加速了电子向 SMX 的转移,从而增强了 SMX 的还原降解。然而,当 SMX 浓度在 15-30mg·L 范围内时,nZVI-HBC+MR-1 系统中 SMX 的去除率显著下降(42%),这是由于 SMX 积累的降解产物的毒性所致。SMX 与 nZVI-HBC 之间高的相互作用概率促进了 nZVI-HBC 反应系统中 SMX 的催化降解。本研究结果为增强不同污染水平水系统中抗生素的去除提供了有前景的策略和见解。