Bayode Ajibola A, Osti Andrea, Glisenti Antonella
Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 Ede 232101 Nigeria
Department of Chemical Sciences, University of Padova Via F. Marzolo, 1 35131 Padua Italy.
RSC Adv. 2024 Jul 12;14(31):22063-22075. doi: 10.1039/d4ra03096f.
The lanthanum ferrite perovskite (LaFO) was synthesized using a citric combustion route and then modified with a porous graphitic nitride nanosheet the wet impregnation-assisted ultrasonic method to produce La.FO@PgNS. Various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet diffuse reflectance spectroscopy (UV-DRS), and Tauc plot analysis were employed to confirm the functional moieties, crystallinity, phase change, morphology, composition, and bandgap of La.FO and La.FO@PgNS. LaFO and La.FO@PgNS were used for the sonophotocatalytic oxidative degradation of sulfamethoxazole (SMX) under low energy and ultrasound wave frequency in the presence of visible light. LaFO and La.FO@PgNS exhibited a sonophotocatalytic degradation capacity of 52.06 and 99.60%, respectively. Furthermore, the rate constant at the optimum condition of pH 7 and 5 mg L concentration was 0.01343 and 0.01494 min for LaFO and La.FO@PgNS, respectively. The integration of sonolysis and photocatalysis in the remediation process of SMX resulted in a synergy of 2.5-fold. Ultrasonic waves and hydroxyl and superoxide radicals are the main species governing the degradation process while La.FO@PgNS was stable over 8 cycles, proving to be a sustainable material for environmental remediation.
采用柠檬酸燃烧法合成了镧铁氧体钙钛矿(LaFO),然后通过湿浸渍辅助超声法用多孔石墨氮化纳米片对其进行改性,以制备La.FO@PgNS。采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能量色散X射线(EDX)光谱、X射线光电子能谱(XPS)、紫外漫反射光谱(UV-DRS)和Tauc曲线分析等多种技术,来确认La.FO和La.FO@PgNS的官能团、结晶度、相变、形态、组成和带隙。在可见光存在下,在低能量和超声波频率条件下,将LaFO和La.FO@PgNS用于磺胺甲恶唑(SMX)的声光催化氧化降解。LaFO和La.FO@PgNS的声光催化降解能力分别为52.06%和99.60%。此外,在pH值为7、浓度为5 mg/L的最佳条件下,LaFO和La.FO@PgNS的速率常数分别为0.01343 min和0.01494 min。在SMX修复过程中,声解和光催化的结合产生了2.5倍的协同作用。超声波以及羟基和超氧自由基是控制降解过程的主要物质,而La.FO@PgNS在8个循环中保持稳定,证明是一种可持续的环境修复材料。