Suppr超能文献

基于计算机视觉的心理学注视估计现场测试。

A field test of computer-vision-based gaze estimation in psychology.

机构信息

Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands.

Lund University Humanities Lab, Lund University, Lund, Sweden.

出版信息

Behav Res Methods. 2024 Mar;56(3):1900-1915. doi: 10.3758/s13428-023-02125-1. Epub 2023 Apr 26.

Abstract

Computer-vision-based gaze estimation refers to techniques that estimate gaze direction directly from video recordings of the eyes or face without the need for an eye tracker. Although many such methods exist, their validation is often found in the technical literature (e.g., computer science conference papers). We aimed to (1) identify which computer-vision-based gaze estimation methods are usable by the average researcher in fields such as psychology or education, and (2) evaluate these methods. We searched for methods that do not require calibration and have clear documentation. Two toolkits, OpenFace and OpenGaze, were found to fulfill these criteria. First, we present an experiment where adult participants fixated on nine stimulus points on a computer screen. We filmed their face with a camera and processed the recorded videos with OpenFace and OpenGaze. We conclude that OpenGaze is accurate and precise enough to be used in screen-based experiments with stimuli separated by at least 11 degrees of gaze angle. OpenFace was not sufficiently accurate for such situations but can potentially be used in sparser environments. We then examined whether OpenFace could be used with horizontally separated stimuli in a sparse environment with infant participants. We compared dwell measures based on OpenFace estimates to the same measures based on manual coding. We conclude that OpenFace gaze estimates may potentially be used with measures such as relative total dwell time to sparse, horizontally separated areas of interest, but should not be used to draw conclusions about measures such as dwell duration.

摘要

基于计算机视觉的眼动追踪是指通过对眼睛或面部的视频记录进行直接估计眼动方向,而无需使用眼动追踪器的技术。虽然有许多这样的方法,但它们的验证通常在技术文献中(例如计算机科学会议论文)中找到。我们的目的是:(1) 确定哪些基于计算机视觉的眼动追踪方法可供心理学或教育等领域的普通研究人员使用,以及 (2) 对这些方法进行评估。我们搜索了不需要校准且具有明确文档的方法。发现了两个符合这些标准的工具包,即 OpenFace 和 OpenGaze。首先,我们进行了一项实验,其中成年参与者将目光固定在计算机屏幕上的九个刺激点上。我们使用摄像机拍摄他们的面部,并使用 OpenFace 和 OpenGaze 处理录制的视频。我们得出的结论是,OpenGaze 足够准确和精确,可以在具有至少 11 度注视角度的刺激物的屏幕实验中使用。OpenFace 在这种情况下不够准确,但在稀疏环境中可能会被使用。然后,我们检查了 OpenFace 是否可以在稀疏环境中与具有水平分离刺激物的婴儿参与者一起使用。我们将基于 OpenFace 估计的停留测量值与基于手动编码的相同测量值进行了比较。我们得出的结论是,OpenFace 眼动追踪估计值可能会与稀疏、水平分离的感兴趣区域的相对总停留时间等测量值一起使用,但不应该用于得出关于停留持续时间等测量值的结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a99d/10990994/f3808bd09ed1/13428_2023_2125_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验