自动婴儿眼动追踪:系统的历史回顾

Automated Infant Eye Tracking: A Systematic Historical Review.

作者信息

Nyström Pär, Ziavras Andrea Nesa, Makashvili Tekle, Juslin Amelia, Lehtonen Venla, Riis Amanda, Gredebäck Gustaf

机构信息

Department of Psychology, Uppsala University, Uppsala, Sweden.

出版信息

Infancy. 2025 Jul-Aug;30(4):e70031. doi: 10.1111/infa.70031.

Abstract

Automated eye tracking has emerged as a powerful method in psychology, and has special benefits when studying infant populations. The field has developed much during the last decades, and while there are numerous reviews on methodological aspects and specific research topics, a general overview of the state and trends of the field has been lacking. That lack leaves the field unguided on several important aspects such as WEIRDness, statistical power and replication issues, unexploited areas of research, and the current status of the field as a whole. We here conducted a systematic review of the complete peer-reviewed English literature on automated eye tracking with children during their first two years of life (793 articles), and extracted dates of publication, author and population geographic affiliation, keywords and sample sizes. The results show that automated eye tracking in infant research is increasingly used, and is accompanied by larger sample sizes, which together suggests improved accessibility. There is a focus on WEIRD populations, and a few broad research topics (methods, language and attention) and specific topics (autism, faces) are dominating the field. The current focus leaves many areas of research understudied, yielding a large potential for more infant eye tracking in the future.

摘要

自动眼动追踪已成为心理学领域一种强大的方法,在研究婴儿群体时具有特殊优势。在过去几十年里,该领域发展迅速,虽然有许多关于方法学方面和特定研究主题的综述,但一直缺乏对该领域现状和趋势的总体概述。这种缺失使得该领域在一些重要方面缺乏指导,比如样本的非代表性、统计效力和重复研究问题、未开发的研究领域以及整个领域的当前状况。我们在此对关于两岁以下儿童自动眼动追踪的全部同行评审英文文献(793篇文章)进行了系统综述,并提取了出版日期、作者和人群的地理归属、关键词以及样本量。结果表明,婴儿研究中的自动眼动追踪使用越来越频繁,且样本量也越来越大,这共同表明其可及性有所提高。研究集中在非代表性人群,少数几个广泛的研究主题(方法、语言和注意力)以及特定主题(自闭症、面孔)主导着该领域。目前的研究重点使得许多研究领域未得到充分研究,为未来更多的婴儿眼动追踪研究留下了巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c6c/12284131/bf42763a0919/INFA-30-0-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索